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Abstract
A new positioning method (PVD) by a single point GPS receiver is proposed. Since it is

a point measurement, a reference point is not required, and it would make possible to build a
simple and low-cost measuring system. Carrier wave phases make a high precision measure-
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ment possible, but the initial phase ambiguities are not required to solve, when the variation
component of the observation point coordinates is the target of the measurement as in the pre-
sent method. The load of the calculation is not heavy. Hence, it would make a quasi-real-time
measurement of high frequency variation possible. However, errors due to satellites are not
eliminated at present since PVD is a point measurement, and errors in low frequency regions
may not be negligible, when the variation of the coordinates is small. Applications to wave
measurements by an ocean buoy and earthquake measurements are expected.

1. Introduction

When a GPS antenna is attached to a buoy, movements of water surface can be measured,
if the relationship between the movement of water surface and that of buoy is known.

Current kinematic GPS survey assures high precision measurements in centimeter order,
but a reference point on land is necessary. Especially in RTK (Real-Time Kinematic) measure-
ments, the distance between the reference and the observation points can't be taken long. Even
when dual frequency method is used, the distance can't be taken longer than about 100 km
(Tsujii et al, 1998). In addition, large amounts of data must be sent from the observation point
to the reference point (or vice versa). Furthermore, the kinematic method requires heavy com-
putation loads. So, a high speed sampling measurement is difficult conventionally.

There is a strong need for measurements of waves in the middle of ocean in meteorology,
fishery, mining and sea transportation. A high precision measurement without a reference
point would be very useful for these purposes. In this report, such kind of measurement is pro-
posed, and the authors would like to refer it as PVD (Point precise Variance Detection) method.

2. The algorithm of PVD method

The idea of PVD method is simple. “If the antenna oscillates, the range between the satel-
lite and the observatbion point may change. If the variation in the signal is detected by any
means, the antenna oscillation may be known. If the carrier wave is used, high precision may
be expected.”

This report explains the method based on the data of vertical motion of a buoy floating on
sea. The vertical motion of the buoy is due to tidal and wind waves. The experiment was con-
ducted off the Aburatsubo Bay of Miura Peninsula from 4:30:00 (UT) on March 19, 1999 for
about six hours (Kato et al., 2000). Trimble 4000S5i GPS receivers were used for measurements.
The position of the buoy is (N35°0%' 397, E139° 36" 30”) in WGS-84. In the present paper, the
measurement of the antenna movement due to wind waves (4, § seconds in period) is discussed.
Ancther antenna (for the reference receiver) was placed on the roof of Aburatsubo Geophysical
Observatory, Earthquake Research Institute, University of Tokyo. The data at the reference
point are not required by PVD method, but the point is referred as the reference point and the
data are used for comparisons with those at the observation point. The distance between the
reference and the observation points is about 900 m. Sampling rate is 1 sec. The L1 wave is
used. Since the distance between the reference and the observation points is short, the
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Fig.2 One way phase data by L1.

ionospheric correction by L2 wave is not necessary.

One way phase data L1 at the reference and the observation points are shown in Figure 2.

In Figure 3 are given the residuals res(L1, 1) obtained by line fitting of the 1st order poly-
nomial. Furthermore, the residuals res(L1, 2) obtained by line fitting of the 2nd order polyno-
mial are shown in Figure 4, and parts of the curves are enlarged in Figure 5. Variation of short
period can be seen clearly in the data of the observation point. This reflects the movement of
the antenna due to wind waves. No such short period variation can be seen in the data of the
reference point.

Next, the residuals res(L1I, 2) are processed by 49-point running average, and the two new
sequence are generated, one the running average itself and the other the difference between the
original data and running average. The former corresponds to a low-pass filter and gives a low
frequency component low(res(L1, 2), 49), and the latter corresponds to a high-pass filter and
gives a high frequency component high(res(L1, 2), 49). ‘The high frequency component ob-
tained by 49-point rurning average contains the component whose period is shorter than 49 sec-
onds. For the purpose of measuring wind waves, signals whose periods are between 1 and 18

seconds are important. From this respect, 49-point moving average covers wider frequency

-339-



242

Hiroshi Isshiki et al.

Residuals after Fitting 15t Order Polynomial (PRN15)
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Fig.3 Residual due to line fitting of the lst order polynomial res(Ll, 1).
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Fig.4 Residual due to line fitting of the 2nd order polynomial res(Ll, 2).
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high(res(L1,2),49) (PRN15)
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PFig.7 Power spectrum of high component high{res(L1. 2}, 49) in res(Ll, 2) obtained by 49pts
running average.

range required for the present purpose. The reason is that the authors are alse interésted in the
nature of the noise in low frequency region for different applications. The results are shown
in Figure 6.

Since the reference point is fixed, the high frequency component high(res(L1, 2), 49) by 49-
point running average should be zero, but not zero. This is because of noises due to the satel-
lite, transmission path of the electro-magnetic wave and receiver clock fluctuation. Naturally,
the same kind of noises should be added on the high frequency component high(res(L1, 2), 49)
of the observation point. The power spectrum of high(res(L1, 2), 49) is obtained by using FFT
and is shown in Figure 7. In the data of the observation point is found a signal component in
the high frequency region. The data of the reference point shows that the noise is in the low
frequency region. .

According to the results obtained by RTK method (supplied as a firmware of a Trimble
4000581 receiver using an algorithm unknown to the users), wind waves whose period is longer
than 9 sec do not exist on the day. Hence, the low and high components low(high(res(L1, 2),
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low(high(res(L.1,2),49),9) (PRN15)
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Fig.8 Low component low (high(res(L1, 2), 49), 9) in high(res(L1, 2), 49) obtained by 9-point
running average.
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Fig.9 High component high(high(res(L1, 2), 49), 9) in high(res(L1, 2), 49) obtained by 9-point
running average.

49), 9) and high(high(res (L1, 2), 49), 9) are obtained by processing high(res(L1, 2), 49) by 9-
point running average. These are shown in Figures 8 and 9. The almost same amount of noise
can be seen on the low frequency components low (high(res(L1, 2), 49), 9) of both the reference
and the observation point data. On the other hand, the high frequency component high(high
(res(L1, 2), 49), 9) at the observation point gives a signal which can be considered clearly due
to wind wave. The high frequency component at the reference point gives the noise. The simi-
lar noise should exist on the data at the observation points too. So, the data at the reference
point gives a measure of noise in high(high(res(L1, 2), 49), 9) at the observation point.

In the discussions mentioned above, both line fitting of polynomials and running average
are used, but the process can be realized by running average alone. In Figure 10a are shown a
high frequency component sequence high(res(L1, 2), 49) obtained by 49-point running average
of a residual of 2nd order line fitting res(L1, 2) and a high frequency component sequence high
(L1, 49) obtained by taking directly 49-point running average of the original sequence L1.
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Furthermore, the low and high frequency components low(high(L1, 49), 9) and high(high(L1,
49), 9) obtained by applying 9-point running average of high{L1, 49) are compared with low
Chigh(res{L1, 2), 49), 9) and high(high(res(L1, 2), 49), 9) in Figures 10b and 10c.

In the present study, the filters are used in two stages, that is, the 49- and 9-point running
averages. Actually for the purpose of obtaining the final results, the 48-point running average
would be unnecessary. To clarify the basic idea of PVD method and the nature of the noises,
the two stage filters are used.

3. Numerical results of variance components calculated by PYD method

The surface coordinate system (z, y, z) is shown in Figure 11. The z- and the y-axes are
directed east and north, and the z-axis vertically upward. The z, ¥ and z components of the an-
tenna movement are calculated from the high frequency component highChigh(L1, 49}, 9).

The coordinates of the observation point are decomposed into the mean, long and short pe-
riod variance components (e, Feot, Tor), (Eet{2), Gt (2), Zean (£)) and (Bt (£), G (1), Zra(2)).
Namely,

Zren () = Fews+ Bon (£) + Fem (2) i
21 (1) = ZmatZwea () +2en(2).

Since the long and short period variance components (Zwm(?}, Gen(2), 2en(t)) and (Fwu (),
Gen (1), Zea (1)) are much smaller than the distance g! between mean position of the receiver 1
and the satellite , pi can be written as

ﬂ‘l(r) = J(fml_-xa‘m'l'fml"'fml)e'!' (Qm—y}u+9m+ﬂm)’+ (Zm-—zin+z‘mu+2m;)’
[ (e Tl D (G — Yk )+ (Zom — 26 )?
+ 2(jml - x:‘ﬂ) (fml +fml) + Z(Qsml - yin.l') (gml+ gm.rl) + 2(2@1 _z:ﬂ) (2ml +zmul)

(.fmu—$£a:) (ﬂm:—y};ﬁ:) (2«31“35«:)

= ﬁil(t) ""ei.r(-frwl(t) +f|wl(t)) _e‘:.w(g-wl(t) +?m1(!)) _e‘l.:(zml(t) +Z—ml(t)). (2)

= i)+ (Gt Zreat)

where (ei., e, ¢}.) are the unit vector directed from the mean observation point (receiver 1)
to the satellite {. Fi(2) changes slowly with time, and the rest of the terms on the right-hand
side of eq.(2) is the long and short period variance components $ and gl of pi. Namely,

At = A(e) +51(0) +p (1) (3)

The elevation and azimuth of the satellite { viewed from the receiver 1 are denoted by 8. and

fem. The unit vector (el:, el,, 2i.) can be written as

(&2, €le, 2ie) = (COS Gl COS Blom, COS Blate SN Blom, Sin Oluw). (4)

Since the altitude of the satellite is as high as 20,000 km, the elevation 8« and azimuth .. may
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Satellite i

Receiverl

Fig. 11 Definition of elevation and azimuth.

be obtained accurately by using almanac.

On the other hand, the carrier wave phase ¢t (in cycle) of the satellite i is decomposed into
the “mean” component $(2), the long period component ¢.(z) and the short pericd component
$i(#) corresponding to 55(2), 6i(¢) and gi() as

¢t = @i(t) + B () +i(e). (5)
Then, 5'(¢) may be approximated by ‘
() = Ai(2), (6)
where A is the wave length of L1 wave. From eqs.(2), (3) and (6),
AP() = —ehaZren(t) — E8sGrma () — €l (£) (7)

is derived. If ¢4(¢) is obtained for three or more satellites, the short period variance component
(2 (t), G (2), Zeai(2)) is determined.

The short period variance component ¢1(2) may be obtained by processing the raw data
#4(2) with an appropriate high-pass filter. In the following, the high frequency component high
(high(L1, 49), 9) is used for L,gi(2).

A part of the data used in PVD method is shown in Figure 12.

Figure 13 shows the flow of calculation. Satellite-satellite single difference would generally
be effective to cancel the error originating from the receiver clock. Comparison between the re-
sult by FVD method and that by RTK method is shown in Table 1, Figure 14 and Figure 15. In
Table 1, comparison among various PVD methods is also shown. Figure 14 gives comparison
of the sequence obtained by PVD method with that obtained by RTK method. Comparison of
the power spectrum is given in Figure 15. The methods using the single difference between the
satellites give the accuracies lower than 3SAT. The reason is not clear now but will be clarified
in the near future. The least square method does not improve the accuracy of the result. When
the number of satellites used is increased, satellites of low elevation must be included in the cal-
culation. In the present case, the elevations of the four satellites are higher than 40 deg and
those of the rest about 20 deg. The transmission delay related to the low elevation satellites
may affect the results. The elevations of the satellites used in 3SAT are higher than 40 deg.
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Fig. 12

According to the results mentioned above, the high frequency components such as wind
wave components may be measured accurately even by a point positioning (Tsuchiya et al.,
20002). The noise in the low frequency component such as low (high(L1, 49), 9) in Figure 10
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Fig. 12 Data used for calculation of PVD method. (a) PRN03. (b) PRN15. (c) PRN19. (d)
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Fig. 13 Flow of calculation in PVD method.

include the components due to satellite and receiver clocks and wave transmission path. These
noises except the one due to receiver clocks can't be eliminated by the present PVD method.
Precise evaluation of PVD method is not discussed fully in this paper. It should be done
based on data obtained by an experiment where the receiver antenna of the observation point
is moved precisely by a mechanical oscillator. The results will be published in the near future.

4. Conclusions

(1) The relatively high frequency components with small noise due to the satellite and receiver
clocks and transmission path of electro-magnetic wave can be measured as precisely as =+ 5§
cm by point measurements.
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Table 1 Calculation results by PVD method.
Standard Std.dev.of Cross corr. of

Notation Method deviation PVD-RTK PVDand RTK
(m) (m)
RTK Real time kinematics 0.08% ¢ 1
3SAT PVD, 3 satellite 0.105 0.046 0899
LSM PVD, 7 satellite 0,085 0.048 0.849
SDS_4SAT PVD, 4 satellite, single difference 0126 0.071 0.836
SDS_LSM PVD, 7 satellite, single difference 0.059 0.052 0.827
3SAT ------- RTK
03
IE\ 02 L l ;l
g 01 1 ;
£ o
¢ -0 Y gp A
2 -0z 1
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time
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(b)

Fig.14 (a) Comparison of sequence between 3SAT and RTK {about 500 sec). (b) Comparison
of sequence between 3SAT and RTK {about 50 sec).

(2) The satellite position is not required to be calculated at each epoch. The azimuth and ele-
vation are used for calculation, but they don’t need to be renewed frequently and can be cal-
culated from almanac with sufficient accuracy.

(3) Since PVD methed introduced in the present paper requires small computational loads, it
will make possible the quasi-real-time rapid measurements of the high frequency variation
components.

(4) In low frequency region, present method is not effective because of the large noise. A
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Fig.15 (a) Power spectrum of 3SAT. (b) Power spectrum of RTK.

countermeasure is discussed by Tsuchiya et al. (2000b) and Isshiki ef gl (2000).

(5) If the low frequency components including the direct current is required, a hybrid method
which combines the conventional Kinematic method and the PVD method will be effective.
The former samples data at a low rate and the latter at a high rate.
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A new tsunami observation system has been developed, which employs the RTK-GPS technique to detect a tsunami
before it reaches the coast. The system consists of dual-buoys: the Support-buoy, which is sensitive to wind-waves,
and the Sensor-buoy, which is of a spar-type and is insensitive to wind-waves. Both buoys are equipped with a
GPS antenna. An experiment using this system was carried out for about nine days in March 1999. Observation
data were monitored at the onshore base station. The results showed that hourly averaged data is consistent with
ocean tides for both buoys. The Sensor-buoy was found not to respond much to wind-waves compared to the
Support-buoy. Thus, it may be preferable to use a spar-type buoy for detecting a tsunami efficiently. Furthermore,
a simple frequency analysis showed that a tsunami could be easily separated from higher frequency wind waves if

a tsunami is superimposed on regular wind waves.

1. Introduction

If a large tsunami is detected offshore and a warning is
announced before its arrival at the nearby coast, the disas-
trous effects of the tsunami may be significantly reduced.
A number of offshore tsunami detection systems have been
developed which mostly use ocean bottom pressure gauges,
from which data are transmitted through an ocean-bottom
cable (e.g. Hino et al., 1998), or by satellite via acoustic
transmission from the ocean bottom to the buoy (e.g. Gonza-
lez et al., 1999). We are developing a new tsunami detection
system which employs a real-time kinematic (RTK) GPS sys-
tem installed on a buoy, and is much more cost effective and
robust relative to the alternative techniques.

The authors started the project in 1997 using a simple pro-
totype buoy (Kato et al., 1998). Then a new experimental
system was developed and an experiment using the new sys-
tem in the open sea was carried out in March 1999. This
paper briefly describes the system and the results of the ex-
periments. A brief discussion is added concerning future
possibilities for operational use and the problems that would
need to be solved in such a case.

2. Hardware System

The current tsunami detection system employs real-time
kinematic-GPS technology which monitors a moving plat-
form in real-time with an accuracy of a few centimeters by
relative positioning. If a GPS antenna is placed on top of a
stable buoy at sea, the variations of the sea surface relative to
a stable location on land can be monitored. Only the buoy’s
vertical motion is important for tsunami detection as well as

Copy right© The Society of Geomagnetism and Earth, Planetary and Space Sciences
(SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan;
The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.

-351-

841

other short period wind waves.

In the present experimental system dual GPS receiving
systems are used: two GPS antennas on land and two on
buoys. At the onshore base station, two GPS antennas are
placed for reference purposes, and the base station has the
function of real-time monitoring of the buoys. Sea level is
measured by two buoy systems. Kelecy et al. (1994) and
Born et al. (1994) used GPS buoys to detect sea level height,
but their experiments were not designed to detect tsunamis,
but to calibrate the ERS-1 and TOPEX/POSEIDON altime-
ter, respectively, for a short period of time. The present
system aims to directly detect tsunamis and is required to
operate for a long time.

In this experimental system, two kinds of buoy are tested:
the Support-buoy and the Sensor-buoy. Designs for these
buoys are shown in Fig. 1. GPS antennas are mounted at the
top of each buoy. The Support-buoy is designed to move with
wind-waves and is equipped with GPS receivers, a number of
sealed lead batteries, a wind generator, solar panels for power
supply, and a pair of radio receiver and transmitter devices.
The Sensor-buoy is a spar-type buoy about 8 m long designed
to be resistant to wind wave motion (e.g., Kelecy et al., 1994;
Born et al., 1994). The center of mass of this spar-type buoy
is located at several meters below the sea surface, so that the
buoy reacts more to long frequency waves compared to the
Support-buoy.

A schematic design of the deployment of the buoys at sea
is shown in Fig. 2. In order for the Support-buoy not to
float away or rotate, it has to be anchored by tri-directional
sinkers. On the other hand, the Sensor-buoy, although con-
nected to the Support-buoy with an antenna cable, should be
free from any tension as much as possible, other than sea-
surface displacement. Thus, the Sensor-buoy is loosely tied
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Fig. 1. Support-buoy (left) and Sensor-buoy (right). Sensor-buoy is insensitive to wind-waves compared to Support-buoy.

/" Sensur Buoy

GPS antenna cable
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the experiment.

to the supporting ropes. The float at the farthest end from the
Support-buoy is anchored by a single sinker.

The data taken at the Support-buoy and the Sensor-buoy
are first stored and processed in GPS receivers installed on the
Support-buoy. Then the processed data are transmitted to the
land base by 429 MHz radio transmissions. The transmitted
data (position of the GPS sensors) are monitored and stored
in the PC at the base station.

Because the data is processed using the RTK software
within the receiver, no correction for tropospheric or iono-
spheric effects could be applied. Thus, in this experiment,
several kilometers would be the practical limit for distance
from buoy to base station in order to achieve an accuracy of
several centimeters.

This system is still experimental and no integrity moni-
toring is performed, as would be required during operational
use. The improved system we are now preparing is planned
to deploy such a monitor system for operational applications.

3. Experiment

The experiment was performed over nine days (March 18—
26, 1999) offshore of the Miura Peninsula, in the Sagami Bay,
in central Japan. The buoy system was installed, as shown
in Fig. 2, about 900 m from the land base and about 500 m
offshore at a water depth of about 25 m. GPS satellites were
tracked every second.

The season was early spring and there were both calm
and rough sea conditions. When the wind was strong, at
about 30 m/s, and the surface was rough, the Support-buoy
swayed heavily but the data were obtained without difficulty,
and there were no radio transmission failures throughout the
period of the experiment. A combination of wind generator
and solar batteries was sufficient to charge the lead batteries
in the Support-buoy. Thus real-time monitoring during the
period was entirely successful.
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Fig. 5. (a) Measured data (b) Measured data + tsunami (c) FFT of measured data (d) FFT of tsunami data. Tsunami data were read manually from Nagai

(1998).

4. Results
4.1 Measurement of tide and wind-waves

First, the data was examined in order to determine if it
accurately traced the ocean tide variability. For this purpose,
the sampled data from the tsunami meter were compared with
data at the Aburatsubo tide-gauge station located about 1 km
from the buoy. Figure 3 shows a comparison with hourly data
at the Aburatsubo tide gauge shown by cross marks, whereas
the line shows height change of the sea surface observed
with the Support-buoy. Plot interval is 1 minute averaged
for 60 points with a one second sampling, to average out
wind-waves. There is no visible shift or offsets in the plots.
Thus the data collected by the buoy system seems to track
the change of sea-surface.

Figure 4 shows an example of a plot for a short period of
data (10 minutes) observed at each buoy in the same time
window. Plot interval is one second. As readily seen, the
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variability of the Sensor-buoy is significantly smaller than
the wind-waves. Although a closer examination may have
to be made, the Sensor-buoy seems not to respond to surface
ripples and wind-waves, and reacts instead to the deeper part
of the water mass, which is preferable for tsunami detection.
4.2 Simulation for detection of tsunamis

The present system demonstrated that it could track the
sea-surface quite well. However, an important consideration
is if the system would be able to detect a tsunami. Because
tsunamis are not generated frequently, the authors have had
to examine them by experimental means . One method is to
simulate a real tsunami record and apply to a mathematical
procedure to check if the tsunami signal could be detected
embedded in the data for non-tsunami surface waves.

Data was taken for the Nihonkai-Chubu earthquake at Oga
(Nagai, 1998). A record of tsunami data was added to the
data under rough sea-surface circumstances. Figure 5(a)
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shows measured sea-surface changes for the Sensor-buoy.
Figure 5(b) shows data added to simulate the tsunami, which
is manually extracted from a publication of Nagai (1998).
The real record of the present tsunami detection system may
look like Fig. 5(b). As is readily seen in Fig. 5, a tsunami
has a much longer period than wind waves, although there
might be large variations in its period. Thus, differentiating
tsunamis from wind waves may not be so difficult if applying
some filtering technique such as the Fast Fourier Transfor-
mation (FFT) to the RTK directly, or in post-RTK results
processing.

Figure 5(c) shows the frequency analysis (FFT) of the
measured record in Fig. 5(a). There are no waves or noise
in the frequency spectrum lower than 0.06 Hz, which has a
period of about 17 seconds (shown by the part surrounded
by the square). Figure 5(d) shows the result of the FFT from
Fig. 5(b), and includes both wind-wave and tsunami. It can
be readily seen that energy appears in the lower frequency
bands (in the dashed square). Thus, detection of tsunamis
might be possible, if other energy sources of different causes
do not contaminate the record.

5. Discussion

The goal is to detect tsunamis as far offshore as possible in
order to provide an early warning system. To realize this goal,
the system should be placed at least 10 km from the coast
and the accuracy of height change measurements should be
smaller than several centimeters.

When the characteristic wavelength of a tsunami is longer
than the water depth, the tsunami propagates approximately
with a velocity of /gh where g is gravity at the surface and A
is the depth of water, which gives about 100 km/h at a water
depth of 100 m and 200 km/h at 300 m depth. Suppose the
present system is placed 10 km from the nearest coast and
the tsunami proceeds perpendicular to the coast, the tsunami
may reach the coast several minutes after the tsunami passes
the tsunami-meter. Because it may take at least a few min-
utes for the present system to detect the arrival of a tsunami,
allowance of several minutes is marginal. Therefore, ideally
the tsunami-meter needs to be placed more than 20 to 30
kilometers from the coast. If we use the so-called on-the-
fly (OTF) technique in RTK-GPS, however, it has a distance
limit of about 10 km (or less) because the positioning accu-
racy becomes much worse if the baseline length exceeds this
distance. Because the OTF technique uses combinations of
satellite pairs for ambiguity fixing, the conditions of fixing
ambiguities become much worse when the baseline exceeds
10 km, because the path of a GPS signal propagates in dif-
ferent parts of the ionosphere and the troposphere. Colombo
(1996) states that the positioning accuracy could be within
several centimeters, even if the baseline exceeds 1000 km
in length. His technique does not fix cycle ambiguities, and
only a ‘floating’ solution is used with ionosphere-free observ-
ables. However, his technique has not yet been developed for
real-time use (Colombo, personal communication). Tsujii et
al. (1997), on the other hand, developed computer software
for RTK-GPS that could be applied for several tens of kilo-
meters in baseline length using a revised OTF algorithm. It
will be necessary to implement one of the new ambiguity
resolution algorithms in this system in the near future.

-354-

Another question that must be answered is what accuracy
level is necessary for detecting tsunamis. The height of a
tsunami, which may cause serious damage, may be only 10
cm high or so in the deep ocean. Tsunami height is greatly
exaggerated when it approaches the coast due to the shal-
lower water depth, and also due to the geometry of coastline.
Therefore, it may be necessary to detect a tsunami that is not
outstanding in the record but is hidden in the wind-waves if
the sea surface is rough. If the present system is used for a
short baseline of several kilometers, it would not be so diffi-
cult to reach this accuracy. However, the condition is more
serious if the system is far from land, for example, several
tens of kilometers.

The authors tested whether the current system could detect
tsunamis using a manually extracted record of a real tsunami.
This kind of simulation may not be sufficient to check the
sensitivity of the system. Further experimental testing may
have to be conducted to check the sensitivity of the system,
in which the buoy is placed on a vibrating bed and the ob-
tained record can be calibrated using an independent sensor
attached to the bed. At an experiment in the sea, other in-
dependent sensors to measure the position of the buoy may
have to be employed to compare the results, at least during the
development phase. These kinds of experiments are being
prepared for the future tests.

In addition to these requirements, the operational system
should have integrity so that the system runs without human
interaction for a long time, in the open sea, for example, for
at least one year. Power supply reliability for long period
operations, durability under bad weather and salt corrosion
conditions, stability of radio transmissions, etc., are thus im-
portant. To overcome these problems, the authors are now
conducting a long-term experiment of the system in Osaka
Bay, in which the system floats and is tied to a harbor wall,
s0 as to investigate problems and improve the design of the
system.

Furthermore, if the system is to be used as an early warn-
ing system, an automatic detection algorithm should be de-
veloped. Currently, the Japan Meteorological Agency has a
tsunami warning system based on the location and magnitude
of earthquakes. If JMA judges an earthquake might cause a
tsunami, an announcement is made to the local government
through satellite transmissions. However, it is not sufficient
to rely on this kind of detection system. There are cases of
a tsunami striking without warning, as was experienced in
the Chile earthquake in 1960. The best way to protect local
residents against tsunamis is to directly observe anomalous
changes in sea-level height.

Summing up, further studies should be made in order to
make the system reliable and trustworthy. The current system
is not a conclusive tsunami detection system. Not only hard-
ware, but also the integrity monitor system and data transmis-
sion system, should be much improved. In addition, the algo-
rithm for detecting a tsunami should be developed, based on
real-time time series analysis techniques. Moreover, consid-
ering that tsunamis have a wide variety of periods, from about
ten minutes to more than one hour depending on earthquake
sources, propagation path and geographical conditions, ex-
tensive numerical simulations will need to be made in order
to ensure that a reliable algorithm for automatic tsunami de-
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tection is developed. These studies are, however, left for the
future.

6. Conclusion

The present article introduces a design for a tsunami de-
tection system using real-time kinematic GPS. The system
employs dual buoys. One is the Support-buoy, which car-
ries two GPS receivers, power supply, wind generator, solar
panels, radio receiving and transmitting equipment, as well
as a GPS antenna. The other is the Sensor-buoy, which is a
spar-type with a GPS antenna at the top and connected to the
Support-buoy with an antenna cable.

Nine days of experimental data demonstrated that the sys-
tem precisely tracks sea-level, when compared to tide-gauge
data. The Sensor-buoy does not respond to short period wind-
waves compared to the Support-buoy, suggesting that a spar-
type buoy is preferable for detecting long period waves such
as tsunami. Frequency analysis of the data after adding a
real tsunami record to the observed RTK data suggests that
it is feasible to detect a tsunami, because a tsunami has, in
general, much lower frequency than wind-waves.

Although there are many other problems to be examined
and solved, it would be desirable to develop this type of
tsunami detection system, and implement it within an early
warning system for residents of nearby coasts from the stand-
point of tsunami disaster mitigation.

Acknowledgments. Mr. Tatsutoshi Takahashi, Earthquake Re-
search Institute, the University of Tokyo, assisted the authors dur-
ing the experiment at Aburatsubo. Personnel of the Geographical
Survey Institute kindly provided tide-gauge data at the Aburatsubo

-355-

tide-gauge station. Dr. JingPing Duan of Leica Geosystems and
an anonymous reviewer gave useful comments to the authors to
improve the manuscript. The research was supported by a Grant-
In-Aid of the Ministry of Education, Sports and Culture (#10354006
and #11792031).

References

Born, G. H., M. E. Parke, P. Axelrad, K. L. Gold, J. Johnson, K. W. Key, D.
G. Kubitschek, and E. J. Christensen, Calibration of the TOPEX altimeter
using a GPS buoy, J. Geophys. Res., 99, 24517-24526, 1994.

Colombo, O., Long-distance kinematic GPS, Chapter 13, in GPS for
Geodesy (2nd edition), edited by P. J. G. Teunissen and A. Kleusberg,
pp. 537-567, Springer, 1996.

Gonzalez, F. L., E. N. Bernard, H. B. Milburn, and H. O. Mofjeld, Early
detection and real-time reporting of deep-ocean tsunamis, Abstracts of
TUGGY99 in Birmingham, B.127, 1999.

Hino, R., T. Kanazawa, S. Sakai, Y. Tanioka, and K. Suyehiro, Tsunamis
from an off-Sanriku and the Papua New Guinea earthquakes observed by
ocean bottom tsunami measurement, Programme and Abstracts The Seis-
mological Society of Japan, 1998, Fall Meeting P23, 1998 (in Japanese).

Kato, T., Y. Terada, M. Kinoshita, H. Isshiki, and A. Yokoyama, GPS
Tsunami-kei no kaihatsu, Gekkan Kaiyo, Special Vol. 15, 38-42, 1998
(in Japanese).

Kelecy, T. M., G. H. Born, M. E. Parke, and C. Rocken, Precise mean sea-
level measurements using the Global Positioning System, J. Geophys.
Res., 99, 7951-7959, 1994.

Nagai, T., Okiai harou kansoku network ni yoru tsunami hakei kansoku,
Gekkan Kaiyo, Special Vol. 15, 1998 (in Japanese).

Tsujii, T., M. Harigae, and M. Murata, The development of kinematic GPS
software, KINGS, and its application to observations of the crustal move-
ments in the Izu-islands area, J. Geod. Soc. Japan, 43(2), 91-105, 1997
(in Japanese with English abstract).

Teruyuki Kato (e-mail: teru@eri.u-tokyo.ac.jp), Y. Terada, M. Kinoshita,
H. Kakimoto, H. Isshiki, M. Matsuishi, A. Yokoyama, and T. Tanno



-356-



(& &#2001-1]

ITS 2001 PROCEEDINGS, SESSION 5, NUMBER 5-12 645
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Abstract. A new tsunami observation system has been developed which employs a real-time
kinematic GPS technique to detect tsunamis in the open ocean before they reach coastal areas. The
system consists of a GPS buoy, fixed GP8 base station, data acquisition system, RTK data processing
system, and a buoy position monitoring system. The new system utilizes a buoy equipped with an
autonomous electrical power supply, tiltmeter, ultrasonic distance measurement system for draught
line monitoring, ancillary data collection system, and a data telemetry system, as well as a GPS
sensor. The buoy has been anchored approximately 2 km off the northeastern coast of Japan near
the city of Ofunato since 23 January 2001. Every second GPS data from the buoy and base station
are collected and processed using Reverse RTK processing software and the estimated position of the
buoy is further transmitted to the city hall and the fire station of the city for real-time monitoring.
Data can also be viewed and downloaded through a web page with a delay of about 3¢ min. The
experiment will continue until Janvary 2002 and various tests will be performed to determine the
overall accuracy of the buoy positions, performance of the system using long-distance RTK, and the
feasibility of detecting tsunamis.

1. Imtroduction

Detection and warning of a tsunami before its arrival at the coast may mit-
igate disasters due to its attack., A number of systems have been developed
for this purpose such as pressure sensors (e.g., Gonzdlez et al., 1999} and
super sonic sensors (e.g., Hino et al., 1998) placed at the sea bottom.

In the present study, we have developed a new tsunami observation sys-
tem that employs the real-time kinematic (RTK)-GPS technigue. The sys-
tem presented in this study is the improved model from cur prior ones that
were successfully tested in the sea (Kato et al., 2000). It is now deployed in
the open ocean for a long-term experiment. This article briefly introduces
the system and the experiment.
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Figure 1: The design of the GPS buoy. GPS antenna is set at the top of the buoy.
Unit: mm.

2. The System

The new tsunami monitoring system consists of a GPS equipped buoy and a
GPS base station. The buoy is a self-contained GPS data collection station
and is designed to be deployable as an autonomous platform. Electrical
power is provided by a solar/wind/battery system and data from the buoy
is transmitted to a base site by one-way radio transmission. Figure 1 shows
the design of the buoy. The height of the buoy is more than 13 m and the
weight is about 10 tons.

At the base station, the data from the buoy is combined with data col-
lected by a fixed land-based GPS receiver in real time using RTK processing
software. The resulting buoy positions are then transmitted by telephone
modems to the Ofunato City office and fire department.

The positions generated by the current system relate to the position of
the GPS antenna of the buoy, which is located at the top of the buoy. In order
to study the relation of this position to the actual surface height of the ocean
we have equipped the buoy with additional sensors: a vertical accelerometer
to evaluate the vertical motion of the buoy, a tilémeter to measure the buoy
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Figure 2: Location map of the GPS tsunami monitoring system.

inclination and an ultrasonic distance measurement system to monitor the
draught line, and finally a meteorological sensor to detect wind direction and
velocity.

A radio transmission system of small electric power consumption is used
for data transmission. Since the transmission rate is limited to 4800 bps,
only GPS data is transmitted to the base station, while other data are stored
in the data logger equipped in the buoy.

In the last buoy system (Kato et al., 2000), we used dual buoys, onc a
spar type about 8 m long equipped with only a GPS entenna, and the other
a larger buoy containing the GPS receiver, lead batteries, solar panels, etc.
on board. These buoys were tethered with a cable. However, the system
was thought to be too complicated to keep stable in the open ocean for the
long term. So, in the present model, we decided to use a single buoy, which
embarks all necessary equipment for operation on board.

3. Experiment

The buoy has been anchored at {39°00’'36”N, 141°47'06”E), which is about
2 kim away from the coast of Ofunato city, along the Sanriku coast, north-
eastern Japan, since 23 January 2001 (Fig. 2). The water depth at the buoy
is about 50 m and the buoy is anchored with tri-directional anchors with an
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Figure 3: Layout of the buoy anchoring system.

intermittent depth sinker (Fig. 3). The horizontal movement of the buoy is
thus limited to within the circle of about 20 m of diameter. Numerical simu-
lation of the buoy's ability to track vertical displacements of the sea surface
long wave shows that almost any possible sea surface displacement will be
reflected by the vertical position of the buoy. Therefore, the buoy may move
sufficiently freely to detect a considerable tsunami, though a small correction
may have to be made for accurate estimation of wave height changes.

Reverse RTK processing for 1-s sampling data is conducted at the base
station and the estimated position of the buoy is further transmitted to the
city hall and the fire station of the city for real-time viewing. Data can
also be monitored and downloaded through a web page (http://tsunami,
ekankyo21.com/) with about 30 min of delay. An example snapshot of a
page is shown in Fig,. 4.

Qur ultimate goal is to be able to detect a tsunami in the open ocean to
pravide as much warning time as possible. The current experimental buoy
is located only 2 km off the shore and would provide little warning time. In
future deployments will require the buoy to be located much further from -
the coast, which will require longer kinematic baselines to be processed. We
plan to operate temporary base stations located as far as 100 km from the
buoy in order to test the performance of the system for long baselines.
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Figure 4: Samples of vertical motion of the buoy in the case of a rough sea (top),
and in the case of a calm sea (bottom).

3.1 Discussion and Remarks

So far the system is running without any serious trouble except intermittent
losses of fix of the RTK-processing and data transmission errors. When the
software fails to fix ambiguities, it outputs DGPS solution. We examined
I-day data at 16 March 2001, and found that more than 97% of data is
normally analyzed and only less than 3% of data suffered from miss-fixing
ambiguity. Data transmission errors have occurred intermittently, probably
because of the problems of modem and telephone line, both of which are not
essential for the buoy system.

Since the buoy is floating in the open ocean, its integrity and reliability is
very important for a long-term operation. Moreover, it is important to place
the buoy far enough from the coast, say, at least 10 km. so that an effective
tsunami warning can be made before its arrival at the coast. In order to
realize this, three key factors must be considered: 1) long distance RTK
GPS with a few centimeter accuracy, 2) a cost effective data transmission
system, and 3) long-term operability of the buoy at the deep ocean.

The present system uses a single frequency RTK so that the feasible
baseline distance is only several kilometers from the coast. Highly accu-
rate long-distance kinematic processing is necessary. Such an application is
already studied by a number of researchers as an off-line non-real-time pro-
cessing (e.g., Tsujii ef al., 1998; Colombo, 2000; Isshiki et al., 2000a, 2000b,
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20601). Such an algorithm may have to be implemented in the real-time
operational mode.

Second, the present radio transmission system allows for a maximum
distance of 5 or 6 km between the buoy and base station. A much stronger
radio system or satellite telemetry should be considered. Although techno-
logical developments should solve these problems in the near future, cost
effectiveness will have to be considered among available techniques.

Third, the buoy has to be placed and mocred at a particular location in
the sea for long-term monitoring. A more reliable and robust buoy system
may have to be designed for this purpose. Our I-year experiment will clarify
problems to be solved.

In addition to these problems, we will have to develop an effective al-
gorithm for detecting the arrival of a tsunami automatically. So far, we
have applied a moving average algorithm of long-term (300 s} and short-
term {30 s) periods to sections of the height data. Significant departure of
the averaged height for these long- and short-term averages may allow us to
detect tsunamis. More extensive simulations and tests using real tsunami
records are clearly needed.

None of these problems are principally difficult to solve. Thus, overcom-
ing these problems, we will be able to deploy operational tsunami monitoring
system (or, more generally, wave monitoring system for wider applications)
in the near future. An array of such tsunami monitoring systems along the
coast will significantly contribute to the mitigation of tsunami disasters.
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Positioning algorism | Measurement quantity Accuracy
Point positioning C/A code ~30m
DGPS C/A code ~3m

RTK Carrier phase

Static positioning

~3 cm

~1cm
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Table 2 Reproducibility of the wave period and height (tide level: high, mean

wave period: 13.1s).

Wave direction

(¢}

Dx)

E

Mean value of zero cross up period A (s)

12.04

12.04

12.04

12.04

12.04

Mean value of vertical motion period of buoy

B (s) 11.67

11.65

11.72

11.67

11.95

Reproducibility of wave period B/A (%)

96.9

96.8

97.3

96.9

99.3

1/3 maximum expected wave height C (m)

9.07

9.07

9.07

9.07

9.07

1/3 maximum expected vertical motion of buoy D (m) 8.67

8.41

8.55

8.67

9.18

Reproducibility of wave height D/C (%)

956

927

943

95.6

101.2
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Table 3 Simulation condition (wave direction: D).

Mean value of |Zero cross up| Significant Maximum

wave period period wave height | wave height
(s) (s) (m) (m)
1 09 0.1 0.2
15 1.4 0.3 0.6
1.75 1.6 0.4 0.7
2 1.8 0.5 0.9
225 2.1 0.7 1.3
25 23 0.8 15
2.75 25 1 1.9
3 28 1.2 22
35 3.2 1.6 3
3.7 21 3.9
46 33 6.1
5.5 4.7 8.7
6.4 6.3 11.7
83 16.7
10.1 16.7
13.1 121 16.7
15 138 16.7
17 15.6 16.7
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Table 4 Additional sensors.

Measured items

Type of devices

Specifications Remarks

Tilt meter for buoy inclination
D5R

Trimble Add back up
GPS receiver 2 frequency

MS—750 device
Vertical accelerometer to Kyowa DC ~ 10
evaluate vertical motion of buoy | ASQ-BL VAQ-500A | Range : 2G

Omron +60° North-South

Response : under 1s East-West

Ultrasonic distance meter to Keyence

monitor draught line UD360

08 ~ 6.0m

Resolution : 1cm

Metrological sensor to detect | Kona

wind direction and velocity

KADEC-KAZE

10min measurement at

every hour, 0~355°

Hakusan
GPS timing system

DATA-MARKLS-20K

s, min, h

Luck of data

<4+

5 satelite data
acquisition

Double difference
pseudrange solution

No good Solution

A

Carrier phase
Ambiguity resolution No

(On the fly)
Yes
y
Double difference No good
carrier phase solution
A4 v
Output Output Output
point positioning phase pseudorange
solution solution solution

012 0000 RTK
Fig. 12 Data processing flow chart of reverse RTK.
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Tsunami due to the 2004 September Sth off the Kii peninsula earthquake,
Japan, recorded by a new GPS buoy
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A tsunami due to the 2004 M7.4 September 5th earthquake off of the Kii peninsula, Japan, was recorded
at the GPS buoy newly designed and established in April 2004, about 13 km off of the Muroto Promontory,
southwestern Japan. The tsunami arrived at the buoy about 8 minutes before its arrival to the nearest tide
gauge station at the tip of the Muroto Promontory. The predicted tsunami record based on preliminary source
model shows excellent agreement (rms 2.7 cm) with the observed GPS record. This demonstrates that GPS buoy
observations can be used not only for a tsunami warning system, but also for precise determination of the tsunami

source.

Key words: The 2004 off of the Kii peninsula earthquake, GPS buoy, Tsunami.

1. Introduction

Two successive earthquakes of M7.1 (foreshock) and
M7.4 (main shock) occurred off of Kii Peninsula, Japan, on
September Sth, 2004. They generated significant tsunamis
along the southern coast of Japan. According to Japan Me-
teorological Agency (JMA, 2004), the maximum tsunami
height due to the main shock reached 0.9 m at Kozushima
tide gauge station and created significant hazards at ports
along the southern coast of Japan (Fig. 1). The maximum
run-up height of the tsunami due to the main shock regis-
tered 4.6 m at Kiho-cho, Mie (Koike et al., 2005).

Offshore of southwestern Japan are the areas of repeated
historical large interplate earthquakes named as Nankai
and Tonankai earthquakes, of which the 1944 Tonankai
(M8.1) and 1946 Nankai (M8.0) earthquakes are the most
recent. These earthquakes caused tremendous hazards due
to tsunamis as well as due to ground shaking. Governmen-
tal investigation suggests a 40-50% probability that the next
earthquake of the same type will occur within 30 years.
Therefore, it is important to establish an effective counter-
measure for the tsunami hazard, in order to protect the local
population.

One such system may be real-time monitoring of changes
in sea-surface heights. A number of tsunami monitoring
systems have been developed. Gonzalez et al. (1999) for ex-
ample used ocean bottom pressure gauges, with data trans-
mitted through satellites. In Japan, ocean bottom pressure
gauge data are transmitted through ocean bottom cables
(e.g., Hino et al., 1998).

Copy right(© The Society of Geomagnetism and Earth, Planetary and Space Sci-
ences (SGEPSS); The Seismological Society of Japan; The Volcanological Society
of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sci-
ences; TERRAPUB.

If the buoy is set offshore distant enough and the data
are transmitted in a real-time manner, detection of the
tsunami can be used for disaster mitigation. We have de-
veloped a GPS buoy for this purpose. We have operated a
GPS buoy system offshore Ofunato, northeastern Japan, for
about three years and have succeeded to detect two tsunami
events; 2001 Peru earthquake and 2003 Tokachi-Oki earth-
quake (Kato et al., 2001). The present article introduces a
newly designed GPS buoy, deployed offshore of the Muroto
Promontory, which detected the tsunami generated by the
September 5, 2004 earthquake.

2. A New GPS Buoy System

We have developed a tsunami monitoring system, which
uses Real-Time Kinematic (RTK) GPS technology to posi-
tion a GPS receiver mounted on top of a buoy floating at
the sea surface, relative to a land-based GPS receiver. The
data are transmitted from buoy to shore using radio trans-
mission. The GPS phase data are processed on a PC placed
at the land-based station (Fig. 2). The newly designed sys-
tem is similar to that used offshore Ofunato (e.g., Kato et
al., 2001). However, considering more practical applica-
tion to tsunami disaster mitigation, it is designed to survive
for more harsh oceanic environments far offshore than the
case of Ofunato. Design of the buoy is shown in Fig. 3. To-
tal height is more than 15 m; height above the sea surface is
6.9 m and the weight is 17 ton. The buoy is tethered to the
bottom anchor, weighing about 150 tons, by an iron chain.

The data are acquired on board the buoy at a one-second
sampling interval and are transmitted in real time by ra-
dio to the ground base. The base station is placed in the
field of the Muroto Meteorological station, Japan Meteo-
rological Agency. The ground base also has a GPS in-
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Fig. 1. Location of the 2004 September 5Sth off the Kii peninsula earthquake and GPS buoy, southwestern Japan.
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Fig. 2. Plan of GPS tsunami monitoring system.

strument and RTK processing is done at the ground base.
RTK-processed positions of the buoy are first applied by
a low-pass filtering using a simple moving average tech-
nique and are then forwarded to a web server for real-time
monitoring of the change of sea-surface using VPN (Vir-
tual Private Network) technology. Latency due to such pro-
cessing mostly comes from the length of data used for fil-
tering. If we use 60seconds of moving average, observer
should wait at least 30 seconds to get the filtered position.
Due to some other technical limitations, the web page is re-
drawn every 30 seconds. As a result, anyone can view the
sea surface with about a 30-second delay at the web page

(http://www.tsunamigps.com/).

The buoy and other equipment were deployed in the mid-
dle of April 2004 at about 12 km nearly south from the tip
of the Muroto Promontory, Shikoku, southwestern Japan.
The water depth of the site is about 95 m (Fig. 4). The
position of the anchor is (33:08:25.748N, 134:12:10.166E)
in WGS84. The baseline length to the base at the Muroto
Meteorological Observatory is about 12.6 km.

After some tests, the buoy system became operational in
May 2004. Since then, there have been anomalously many
typhoons that hit the Japanese islands in the summer of
2004, which have been excellent for testing sustainability
of the system. The system survived those typhoons with
maximum peak-to-peak wave heights of more than 20 me-
ters.

3. Tsunami Detected for the 2004 Off Kii Penin-
sula Earthquake

The 2004 Off Kii Peninsula earthquakes (M7.1 and 7.4)
occurred at 19:07:7.5 (Japan Standard Time, +9 GMT;
33°1.7'N, 136°48.0'E, depth 38 km) and at 23:57:16.9 (JST;
33°8.6'N, 137°8.5'E, depth 44 km) , respectively (Fig. 1).
Both of earthquakes generated marked tsunamis.

Figure 5 shows the original record of sea surface height
for that day. Since the sea water was rather rough and the
peak-to-peak amplitude of wind waves were several meters
high.

We applied low-pass filtering to extract the long-period
waves, including the tsunami. Figure 6 shows the filtered
record for the period from 18:30 to 20:30 that should in-
clude the tsunami for the foreshock. Two types of filtering
were applied; 150-1800 sec digital band-pass filter and 150
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sec moving average after removing the astronomical tides
(Matsumoto et al., 2000). The tsunami should have arrived
at the buoy around 19:30. However, a significant tsunami
cannot be seen in the record, though a possible characteris-
tic wave could be seen around 7:30 (see Satake et al., 2005).

The main shock generated the largest tsunami of this
earthquake sequence. Figure 7 is the comparison of the time
series for the period of 00 h to 02 h (JST) of September 6,
2004. The uppermost record is the tide gauge record taken
at Muroto Port, about 15 km north of the GPS buoy (Fig. 1).
Since the amplitude of tsunami is much exaggerated when
it approaches the coast, the tide gauge record is multiplied
by 1/5. The second time series of Fig. 7 is the predicted
record at the GPS buoy. Source parameter of Yamanaka
(2004) was used for this purpose. The third time series is
the position record of the GPS buoy after astronomical tides
were removed and a moving average of 150 seconds was
applied. Matsumoto et al. (2000) was used for estimating
astronomical tides. The bottom time series is the same
record but after a 150-1800-second band-pass filter was
applied.

The filtered GPS position record closely resembles the
predicted record, with a rms of 2.7 cm if we take the first
30 minutes from the onset of tsunami, indicating that the
GPS buoy is capable of detecting this size of tsunami.
Peak-to-peak amplitude of the largest wave is about 20 cm.
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Although numerical simulation suggests a small retarding
phase at around 0:25 JST, it cannot be discerned in the GPS
record. The first tsunami wave measured at 00:32 at the
buoy reached the Muroto tide gauge about 10 minutes later.

4. Discussion

Most striking in the record (Fig. 7) is the similarity be-
tween the observed and predicted record of the tsunami.
Non-linear effects that may prevail in shallow water might
be negligible at the ocean depth of this buoy (about 100 m).
Also, effects of coarse grid for approximating the coast line
geometry may also degrade the prediction if the site is too
close to the coast (not the case here). Hence, GPS records
in the deep outer ocean far from the coast may be helpful
for estimating the source effects more directly for numer-
ical simulation studies compared with tide gauge records
(Matsumoto and Mikada, 2005; Baba et al., 2005; Satake
et al., 2005). The similarity of the simulated and observed
records suggest that the accuracy of RTK GPS is enough to
detect a tsunami wave of several cm or greater amplitude.

There are several questions to be raised as to the effective
use of GPS buoys for disaster mitigation. First, it should be
examined if 13 km offshore is far enough for early detec-
tion of tsunami. As was indicated above, tsunami detection
at the GPS buoy preceded by about 8 minutes detection at
the Muroto tide gauge. This may be rather marginal for
the residents who are living at the tip of Muroto Peninsula.
Residents may require much earlier warning, say 20 min-
utes or more would be necessary for effective evacuation.
For a more effective system, the buoy may have to be placed
much farther from the coast, say more than 50 km. It should
be noted, however, that the present location may be effec-
tive enough for the people who are living in locations at
greater distances, such as Kochi or Osaka, Kobe area.

Data latency in the present system is about 30 second
at maximum due both to low-pass filtering and technical
limitation in web operation. This is far shorter than the
expected lead time of 8 to 10 minutes of early detection of
tsunami in the present case. Therefore, the impact of data
latency would be negligible even in the present system.

There are advantages and disadvantages to locating the
buoy farther from the coast. Since, generally, the water
depth is much larger if you go farther from the coast. Then
the tsunami amplitudes become much smaller and more dif-
ficult to detect. Also, tethering would be problematical in
deeper ocean for the depth more than 1000 m. Also, we
would need to improve the accuracy of RTK-GPS position-
ing, particularly the vertical component in case of longer
baselines.

There are some other challenging technologies for the
outer ocean, such as real-time continuous data transmission,
long-term sustainability of the buoy itself. Satellite data
transmission shall be investigated for data transmission. For
a long-term operation of the buoy system, say 10 years or
more, a secure and autonomous buoy system will have to be
designed.

In the course of revising this article, a giant earthquake
of M9.3 occurred offshore Sumatra Island, Indonesia, and
devastated the whole area surrounding the Indian Ocean.
An enormous tsunami generated by the earthquake caused
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Fig. 5. Original record of sea surface height taken by GPS buoy. Vertical
axis is ellipsoidal height in WGS84.

more than 300,000 people of deaths and missing in the
area. Many of countries as well as United Nation asserted
necessity of implementing a tsunami early warning system
in the Indian Ocean as has been operational in the Pacific
Ocean. The present system of GPS buoy would be one
of powerful tools for monitoring sea-surface and detecting
tsunami before its arrival to the coast.

The GPS buoy is much inexpensive compared with the
ocean bottom pressure gauge with cable as has been intro-
duced surrounding Japanese Islands. Array deployments of
GPS buoys may contribute to reduce costs. On the other

456

454 GPS record (Bar|d pass filter 150-1800s)

152 MMM A S AN A Ay i

450

MWMMMWWMMWW

GPS record (Running average 150s)

Height (m)
S S S
2 F R
r 5 =

'S
»
N

440

18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45 21:00 21:15 21:30
Time (2004/09/06 Hr:min)

Fig. 6. Filtered vertical components of GPS record for the period 18:30
to 21:30. (Above) 150-1800 second band-pass filtered, and (Bottom)
150-second moving averaging applied. Vertical position of bottom
record is arbitrarily offset for the sake of easy comparison.

hand, current accuracy of RTK-GPS is still inferior to pres-
sure sensor if the distance from the ground base exceeds 20
or 30 km. Combination of GPS buoy with ocean bottom
sensors would be an ideal combination for the most effec-
tive monitoring system of sea surface.

5. Conclusion

A newly designed GPS tsunami monitoring system was
established about 13 km south of the tip of Muroto Promon-
tory. The system was able to detect the tsunami that was
generated by the main shock of the 2004 Kii Peninsula
earthquake. The maximum peak-to-peak amplitude of the
tsunami was about 20 cm and was consistent with numeri-
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cal prediction. The arrival of the first maximum wave was
about 8 minutes prior to the arrival to the Muroto tide gauge
located at the tip of the Promontory. Although deployment
farther away from the coast would be ideal, the present
system may be served as a powerful tool for monitoring
tsunami as a part of the countermeasure for tsunami disaster
mitigation.
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This paper inttoduces the Japanese experience of the offshore tsunami profile observation, For the tsunami
profile detection sensors, newly developed two syslems are introduced: one is seabed installed Doppler-typed Wave
Directional Meter (DWDM), and the other is the GPS Buoy Tsunani Gauge. Plan of the Round-Japanese-Coasts
and Round-Indian-Sea Ofishore Tsunami Monitoring Network is also introduced in the paper. Real-time data
processing will be conducted at the Data Center, Satellite data communication system with self electric energy supply
by the coastal wind-power-genesators and battery should be applied to keep the continuous data communication
without interruption in case where stable electric power is difficult to be obtained.
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ABSTRACT

Development and improvement of the International Tsunami Monitoring System is getting its importance after the
2004 Sumatra-Off-Earthquake Tsunami disaster. This paper introduces the Japanese experience of the offshore
tsunami profile observation. For the tsunami profile detection sensors, newly developed two systems are introduced,
one is seabed installed Doppler-typed Wave Directional Meter (DWDM), and the other is the GPS Buoy Tsunami
Gauge. Observed recent offshore tsunami profiles are introduced in the paper. These observation data proved that
offshore tsunami observation is able to catch the exact tsunami characteristics several minutes before the coastal
arrival. Plan of the Round Japan and Round Indian Sea Offshore Tsunami Monitoring Network is also introduced in
the paper. Real-time tsunami profile detection data processing should be conducted at the Data Center.

KEYWORDS: NOWPHAS, Offshore Tsunami, Observation, DWDM, GPS Buoy, Data Center

1. INTRODUCTION

Establishment of the offshore tsunami monitoring network system is an urgent task for countries facing ocean.
Nevertheless, as a huge disastrous tsunami is a rare event, it is difficult to make understand the importance of
maintaining and operating the network system, if the system is applicable only for tsunami events. Therefore, the
network system needs to be applied to monitoring not only tsunami but also daily sea conditions such as coastal
waves and tides. This paper introduces a basic design of Japanese nationwide tsunami monitoring system, by
improving the NOWPHAS (Nationwide Ocean Wave information network for Ports and HArbourS) system (Nagai,
2002), and by using the newly developed GPS buoy system (Nagai et al., 2005a).

2. DWDM, GPS BUOY AND ON-SITE SENSORS

Table 1. Existing Tsunami Monitoring Sensors

Observation Site Sensor Type Observation Items Note
Tsunami
Deep Sea GPS Buoy Waves, Tides
Air Pressure and

deeper than 50m .

(deep ) Seabgdairissure Tsunami Water Temperature

9 Correction

Shallow Sea Seabed Pressure or Tsunami
(less than 50m) Acoustic Gauge Waves

Tide Station . . Filtering Effects
with Tide Well Tides,(Tsunami) Correction
On the Coast Acoustic Gauge (WZ\S/EQ%I'T(; es) On-Site Wave
Overtopping Tsunami Flow On-site Flow

Gauge

Table 1 shows various monitoring sensors for tsunami profiles in the different water depth areas.

Deep-sea zone is defined as the water depth 50m or deeper where routine maintenance work is not possible for
the seabed installed sensors. Deep-sea sensors can detect tsunami profiles several minutes before its arrival on the
coast. That is very important to prevent tsunami disasters. The earlier deep-sea tsunami sensor was seabed
installed pressure typed one installed at water depth 1000m or deeper with seabed cable of several 10s km length
connecting the seabed sensor and on-land station which enables real-time data acquisition. Seven pressure
sensors were installed around Japan in between 1980 and 2000 (Hirata, 2005). Although such seabed sensor
installation was very expensive for the seabed cable connection, once the seabed pressure sensor got out of use, it
was impossible to repair the system. In addition, existing seabed- installed pressure gauge is not applicable for
monitoring of waves and swells, for deep-sea wave actions do not reach the seabed. USA NOAA research group
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recently developed Tsuna-meter system consisted of deep-sea seabed pressure sensor and a deep-sea data
transmission buoy. It was reported that the wireless acoustic data transmission test between the seabed sensor and
the surface was successfully conducted (Bernard et al., 2001 ; Bernard et al., 2005). Nevertheless, the
Tsuna-meter system was applicable only for tsunami events and not for routine waves and tides. And the tsunami
events are very rare, actual offshore tsunami observation data obtained by the Tsuna-meter system has not yet
been reported.

On the other hand, Japanese coastal wave observation network, named as NOWPHAS consists of seabed
installed shallow water acoustic wave gauges, successfully reported to observe offshore tsunami profiles (Nagai et
al., 1996 ; Goda et al., 2001 ; Nagai et al., 2004a). Photo 1 shows seabed installed Doppler-typed Wave Directional
Meter (DWDM), which is a principal wave sensor of the Japanese NOWPHAS system (Takayama et al., 1994;
Hashimoro et al., 1996). DWDM is able to observe wade frequency range of sea waves from short period wind
waves to long period astronomical tides, storm surges and tsunamis, by using the ultrasonic acoustic waves.

Photo 1. DWDM Seabed Installed Sensor

Nevertheless, seabed acoustic wave gauge is applicable only for shallow water area with water depth 50m or
less, for its routine maintenance necessity. From the point of view of earlier tsunami detection, such restriction is not
favorable. A new wave, tide and tsunami meter for deep-sea area was desired.

Recently, GPS buoy tsunami detection system shown in the Figure 1, was newly developed (Kato, et al., 2001).
And the field experiment of the GPS buoy system proved its applicability to offshore waves, tides and tsunami
observation (Nagai, et al., 2004b). Real-Time-Kinematic method is used in the system with on-land reference GPS
station within 20km from the buoy, which is further offshore area than the existing NOWPHAS seabed installed
sensor stations. The first deep-sea GPS buoy system was installed in April 2004 100m deep and 13km off the cape
(Kato et al., 2005). Photo 2 shows the offshore installed GPS buoy.

GPS Zatellite

Base S GPS Tsunami
Statiunx,_.--**" N !'lf_eter

Anchor

Figure 1. GPS Tsunami Detection System

Although GPS buoy system is able to detect offshore tsunami profile several minutes before arriving the coast,
on-site tsunami observation is also important, for the need to understand the actual coastal situation. Therefore, itis
recommendable that on-site tsunami sensors at the coast such as tide gauges and wave-overtopping sensors are to
be installed together with the GPS buoys. For the coastal on-site observation, existing Fuse typed tide gauge is not
recommended for the tsunami observation for its low-pass-filtered characteristics. In order to eliminate the high
frequency components of sea waves, tide well water is connected to the sea with small pipe, which gives the

2
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low-pass-filtered effects. Therefore, high frequency tsunami wave components may under-estimated, which gives
us incorrect tsunami information. For the on-site tsunami detection, on-air acoustic typed tide gauge (Goda et al.,
2002) or on-site wave-overtopping sensors (Hiraishi et al., 2004) are more recommendable.

Photo.2 Muroto-off GPS buoy

3. EVALUATION OF NOWPHAS FOR OFFSHORE TSUNAMI DETECTION

Figure 2 shows an example of tsunami transmission time estimation around the Muroto-Misaki area faced to the
Pacific Ocean. In the area, the first deep-sea GPS buoy system was installed in April 2004, 100m deep and 13km off
the cape (Kato et al., 2005). The on-land station of the station was located at the wind measurement tower of the
Muroto-Misaki weather station of the Japan Meteorological Agency (JMA). In the area, also exist NOWPHAS
seabed acoustic wave station 27m deep and the JMA tide station inside the Muroto-Misaki fishery port. Tsunami
transmission time from the offshore station to the coast is roughly estimated by assuming that tsunami velocity is
(gh)”z, where g is the gravity acceleration (9.8m/32) and the h is the local depth. In the Figure 2, tsunami
transmission time was estimated from the JMA tide station by the inverse calculation, supposing that the water
depth is constant (5m) inside the fishery port during the length of 500m from the entrance to the tide station, and the
inverse tsunami travel line is linear from the port entrance by neglecting the wave diffraction effects. As shown in the
figure, estimated tsunami transmission time between the NOWPHAS wave gauge and the tide station is about 5
minutes, and one between the GPS buoy and the tide station is about 11 minutes.

Figure 2. Example of Tsunami Transmission Time Estimation

3
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Figure 3 indicates the estimated tsunami detection time at the existing NOWPHAS wave stations. Time
estimation at each station was conducted in the same method shown in the Figure 2. Nevertheless, at some
stations where detailed seabed topography data was difficult to be obtained, more simplified estimation was
conducted from the information of the seabed sensor depth hy and seabed cable length | of each station. Tsunami
transmission time can be calculated by assuming the topographical inclination i is constant (i = ho/l). In the Figure 3,
water depth at each NOWPHAS station is shown in meter unit.

Three category of the tsunami transmission time is indicated in the Figure 3. At some existing NOWPHAS
station, tsunami attack can be detected 10 minutes or more before arriving at the coast, which indicates some of the
existing NOWPHAS stations are possible to use the real-time tsunami information system. Such stations are seen
where the seabed slope is gentle and shallow water area is spreading to the offshore direction. On the other hand,
some of the NOWPHAS stations will observe tsunami 5 minutes or less before its arrival to the coast, where bottom
slope is relatively steep. At such case, existing NOWPHAS stations are not deep enough for the earlier tsunami
detection purpose. At such area, deeper tsunami sensors with GPS buoys are to be installed.
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Figure 3. Estimated Tsunami Detection Time at NOWPHAS Wave Stations

4. EXAMPLES OF THE HYBRID OBSERVATIONS

2004 Tokaido-Off-Earthquake was generated at 23:57 JST on September 5, 2004, just five months after the
Murotsu-Port-Off GPS buoy's installment. The magnitude of the earthquake was reported as 7.4, and the
hypocenter of the earthquake was off the Kisei-Penisula Pacific coast about 400km northeast from the GPS buoy.
Before the main earthquake pre-event with magnitude 6.9 was also reported about five hours before, which caused
relatively smaller tsunami.

Figure 4 shows the observed tsunami profile, eliminating high frequency wind wave effects and low frequency
astronomical tide effects by a numerical band-pass filter (Kato, et al., 2005). Three observation stations existed at
the Murotsu Port area, one GPS buoy at 100m deep, one NOWPHAS seabed installed typed acoustic wave gauge
27m deep, and one JMA coastal tide station inside the port at the shore. Those three stations observed the tsunami
profile clearly, although the coastal tide station showed the pre-event caused week tsunami profile effect before the
arrival of the main tsunami.

The tsunami wave started from the sea level rise around 0:26 JST. Peak time of the first tsunami wave was 0:31,
0:32 and 0:40 respectively at each station, and the first tsunami height (deviation) was 10cm, 22cm and 41cm
respectively. GPS buoy 100m deep detected the tsunami profile 9 minutes before the coastal tide station, which
proved the high possibility of the deep water GPS's contribution of the tsunami disaster prevention for inhabitants'
rapid evacuation, if the real-time warning information system was put into practical use (Nagai, et al., 2005b).

Slight differences were seen in the expected and observed tsunami detection time by comparing the Figure 2
and Figure 4. Figure 2 indicated that the offshore GPS buoy is expected to observe the tsunami profile 11 minutes
before its coastal arrival, while the Figure 4 observed 9 minutes arrival time difference. And Figure 2 indicated that
the offshore NOWPHAS wave gauge is expected to observe the tsunami profile 5 minutes before its coastal arrival,
while the Figure 4 observed 8 minutes arrival time difference. Several reasons of the difference can be considered.
Figure 2 neglected the three dimensional effects of the tsunami propagation. Tsunami waves were supposed to
propagate in one single direction without receiving diffraction. Figure 2 also neglected of the tri-dimensional
multi-passes of the tsunami propagation. For the further discussion to explain the tsunami propagation time
difference between the Figure 2 and Figure 4, future detailed tri-dimensional numerical simulation will be desirable.
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Figure 4. Observed 2004 Tokaido-Off Earthquake Tsuanmi Profile

Figure 5 shows the result of spectrum analysis of the Murotsu-Port 2004-Tokaido-Off-Earthquake-Tsunami
record. Figure 5 indicated coastal tsunami transmission characteristics due to the seabed topography effect. At
water depth 100m, the tsunami frequency spectrum was double peaked shape with one peak 0.0013Hz of
corresponding period 13 minutes and the other peak 0.002Hz of corresponding period 8 minutes. Both peaks were
almost equivalent in the spectrum power. At the 27m deep observation station, both of the two peaks showed
amplification almost in the same rate. Therefore, tsunami profiles 100m deep and 27m deep showed very similar
shapes, although amplification was observed due to the long wave shoaling effect. On the other hand, coastal tide
station spectrum showed single peaked figure, for amplification of the higher frequency peak was much more
obvious than the lower frequency one. Obvious peak was seen at the tide station at the frequency 0.002Hz. It was
supposed to be the natural resonance frequency inside the port.
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Figure 5. 2004 Tokaido-Off Earthquake Tsuanmi Spectrum Analysis

Applicability of the GPS buoy to typhoon induced abnormal sea waves observation was also verified for high
wave condition due to the typhoon No0.0423 attack. Peak significant wave height was obtained as 14.21m with
significant period 16.3s at 14:20 (JST) on October 20, 2004. Simultaneous wave record by the same seabed
installed acoustic wave gauge at 27m deep showed significant wave height 13.55m with significant period 15.8s. As
both wave records showed fairly good agreement, it can be concluded that both wave data are reliable ones.

5
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5. PROPOSAL OF THE TSUNAMI OBSERVATION NETWORK

Horizontal allocation of the sensors was also discussed in the paper. Figure 6 is the proposed Round Japan
offshore observation network. Considering a possible horizontal scale of near-coast tsunami generating
earthquakes, tsunami detection stations should be installed at intervals of 50-100km along the coast, taking into
consideration of the possible tsunami sources around Japan (Hatori, 2005). Small islands on the ocean are suitable
points for long-distance tsunami detection. Figure 7 is the proposed Round Indian Ocean offshore observation
network. As the Indian Ocean area is luck of possible tsunami sources data, authors proposed the interval of the
offshore tsunami detection sensors to be about 300km along the coast supposing the 2004 Sumatra-Earthquake
tsunami source size.

| Past Tsunami Sources ]

£70

L 1a98~1893

§ 1894~ 2003

‘ € Nstwork Stations

R
&
Ls]

HUFFFET

Figure 7. Plan of the Round Indian Ocean Tsunami Monitoring Network
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6. TSUNAMI DATA CENTER DESIGN

How to design the data center is also important, because the data center has two important functions; one is
real-time data service and the other is non-real-time data management, analysis and research. Time-stepped
real-time tsunami detection system is proposed in the paper in consideration that tsunami periods are generally very
large like several tens of minutes and tsunami warning is necessary before knowing the first wave height and period
of tsunami.

Figure 8 shows the data flow of the Data Center for observed tsunami, waves and tides. The Data Center should
cover two important functions together in order to realize the cost efficiency of the system: real-time data processing
and non-real-time data management of information obtained by (1) the deep-sea GPS buoys, (2) the coastal
acoustic wave gauges (DWDM: Doppler-typed Wave Directional Meter) already installed as a nationwide network ,
and (3) the existing coastal tide stations network.

Sea Coast Data Center Disaster
Prevention
(Real Time System) (Central Government)
Data Processing — Meteorological Agency

DWDM|—| On-SIIand —  Wave Calculation Other Ministries
- Tsunami Detection

- (Local Governments)
t ] Inhabitants

oPS onang) |(Non-Real Time System) —| (Public): Website |
Buoy 1 st Data Management

i Tsunami Analysis | —| (Academic Societies) |
Wave Analysis
Annual Report

Figure 8. Wave, Tsunami and Tide Data System

Figure 9 shows the basic design of the tsunami detection time steps. Tsunami information should be issued by
time series, for tsunami periods are several tens minutes. In order to make maximum use of the offshore tsunami
sensors advantage, capable to observe tsunami profile about 10 minutes before at the coast, offshore tsunami
information data service cannot wait until the offshore sensor finishes to observe the complete figure of the first
tsunami wave with its height and period. Here authors propose the three time stages of the offshore tsunami data
service.

Peak Point

Zero-up-Cross Point

*
Earthquake
Generation Time
First Stage Second Stage Third Ste_lge
Information Information Information

Figure 9. Time Series of Tsunami Detection Information

Table 2. Proposed Critical Offshore Sea Level Deviation Values

GPS Bouy Critical Water Level
Depth(m) Deviation(cm)
10 65
20 55
50 45
100 35
200 30

7
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The first stage information is when the low-pass-filtered water level exceeds some critical value from the

estimated astronomical tide level. At the first stage information, offshore tsunami height and tsunami period are not
yet known. It is the warning information that abnormal low frequency wave, possible tsunami wave, is identified. At
the first stage, exact tsunami amplification rate from the offshore station to the coast is not also known, for the
amplification rate depends on the tsunami period. Table 2 is the proposed critical values, supposing that tsunami
wave height is proportional to the inverse of 1/4 exponent of the water depth. In addition tsunami waves are
supposed to break when the tsunami wave height is greater than half of the water depth, and the critical tsunami
height at the coast is supposed to be 1m. It means that the critical water deviation shown in the Table 2 is equivalent
to the tsunami deviation of 1m at the water depth 2m.
Therefore, in order to avoid the miss-judge of tsunami arrival warning, the deviation errors of the numerical
tsunami-filtered profiles should be less than the critical values shown in the Table 2, which is a very important given
condition for the filter profile determination. In addition, as the tsunami detection is a very urgent task, tsunami-filter's
time profile (impulsive function) should be short enough compared to the estimated tsunami travel time from
offshore observation point to the coasts, which is about 5-20 minutes, which is another important given condition.

7. CONCLUDING REMARKS

Development and improvement of the International Tsunami Monitoring System is getting its importance after the
2004 Sumatra-Off-Earthquake Tsunami disaster. Up to now, tsunami warning system was developed and
established based on earthquake vibration observation data only. Nevertheless, earthquake vibration data may give
us incorrect tsunami forecasting, for the strength of the earthquake vibration and the tsunami energy are not exactly
proportional. Therefore, offshore and coastal tsunami-wave profile observation system should be included in the
tsunami monitoring system. This paper intended to contribute to the international efforts to prevent tsunami disasters
by using our experiences in offshore tsunami, wave, and tide observation and network data analysis.
Plans of the Round Japan and Indian Sea Offshore Tsunami Monitoring Networks were also introduced in the paper.
Real-time data processing will be conducted, taking into consideration that tsunami information should be issued by
time series, for tsunami periods are several tens minutes.
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64 T. Nagai et al.

Development and improvement of the International Tsunami Monitoring System is get-
ting more important after the 2004 Sumatra-Off-Earthquake Tsunami disaster. Till now,
tsunami monitoring system has been developed and established based on observation net-
work of strong ground motion only. Nevertheless, earthquake vibration data may give us
incorrect tsunami forecasting, for the strength of the vibration and the tsunami energy
are not exactly proportional. Therefore, offshore and coastal direct tsunami-wave profile
observation system should be included in the monitoring system. This paper introduces
basic design of the future tsunami monitoring system using newly developed GPS buoy
system and other coastal and on-site sensors. Method of real-time tsunami data processing
system is also introduced.

Keywords: Tsunami; wave observation; NOWPHAS; GPS Buoy; data center.

1. Introduction

Establishment of the offshore tsunami monitoring network system is an urgent task
for countries facing the ocean. Nevertheless, as a huge disastrous tsunami is a rare
event, it is difficult to understand the importance of maintaining and operating
the network system, if the system is applicable only for tsunami events. Therefore,
the network system needs to be applied to monitoring not only tsunami but also daily
sea conditions such as coastal waves and tides. This paper introduces a basic design
of Japanese nationwide tsunami monitoring system, by improving the NOWPHAS
{Nationwide Ocean Wave information network for Ports and HArbourS) system
[Nagai, 2002], and by using the newly developed GPS buoy system [Nagai et al.,
2005a).

2. GPS Buoy and On-Site Sensors

Table 1 shows various monitoring sensors for tsunami detection in the different water
depth areas.

Deep-sea zone is defined as the water depth 50 m or deeper where routine main-
tenance work is not possible for the seabed installed sensors. Deep-sea sensors can
detect tsunami profiles several minutes before its arrival on the coast. That is very
important to prevent tsunami disasters. The earlier deep-sea tsunami sensor was
seabed installed pressure typed one installed at water depth 1,000 m or deeper with
seabed cable with several tens of km in length connecting the seabed sensor and
on-land station which enables real-time data acquisition. Seven pressure sensors
have already been installed around Japan between 1980 and 2000 [Hirata, 2005).
Although such seabed sensor installation was very expensive for the seabed cable
connection, once the seabed pressure sensor got out of use, it was impossible to repair
the system. In addition, existing seabed-installed pressure gauge is not applicable -
for the monitoring of waves and swells, for deep-sea wave actions do not reach the
seabed. USA NOAA research group recently developed Tsuna-meter system con-
sisted of deep-sea seabed pressure sensor and & deep-sea data transmission buoy. It
was reported that the wireless acoustic data transmission test between the seabed
sensor and the surface was successfully conducted [Bernard et al., 2001; Bernard
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Table 1. Existing tsunami monitoring sensors.

Observation site Sensor type Observation items Note
GPS buoy tsunami
waves, tides
Deep sea . )
(deeper than 50 m) seabed pressure tsunami air pressure and
gauge water temperature
correction
Shallow sea seabed pressure or tsunami
(less than 50 m) acoustic gauge waves
tide station tides (tsunami) filtering effects
with tide well correction
On the coast acoustic gauge tsunami on-site wave
(waves, tides)
overtopping tsunami flow on-site flow
gauge

et al., 2005]. Nevertheless, the Tsuna-meter system was applicable only for tsunami
events and not for routine waves and tides. And the tsunami events are very rare,
and actual offshore tsunami observation data obtained by the Tsuna-meter system
has not yet been reported.

On the other hand, Japanese coastal wave observation network, named as
NOWPHAS consists of seabed installed shallow water acoustic wave gauges, suc-
cessfully reported to observe offshore tsunami profiles [Nagai et al., 1996; Goda et
al., 2001; Nagai et al., 2004a]. Nevertheless, seabed acoustic wave gauge is applicable
only for shallow water area with water depth 50 m or less, for its routine mainte-
nance necessity. From the point of view of earlier tsunami detection, such restriction
is not favorable. A new wave, tide and tsunami meter for deep-sea area was desired.

Recently, GPS buoy tsunami detection system has newly been developed [Kato,
et al.,, 2001]. And the field experiment of the GPS buoy system proved its ap-
plicability to offshore waves, tides and tsunami observation [Nagai et al., 2004b).
Real-Time-Kinematic (RTK) method is used in the system with on-land reference
GPS station within 20 km from the buoy, which is a further offshore area than the
existing NOWPHAS seabed installed sensor stations.

Although GPS buoy system is able to detect offshore tsunami profile several
minutes before arriving the coast, on-site tsunami observation is also important,
for the need to understand the actual coastal situation. Therefore, it is recom-
mendable that on-site tsunami sensors at the coast such as tide gauges and wave-
overtopping sensors are to be installed together with the GPS buoys. For the coastal
on-site observation, existing fuse typed tide gauge is not recommended for the
tsunami observation for its low-pass-filtered characteristics. In order to eliminate
the high frequency components of sea waves, tide well water is connected to the sea
with small pipe, which gives the low-pass-filtered effects. Therefore, high frequency
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Fig. 1. GPS buoy tsunami detection syster.

tsunami wave components may under-estimated, which gives us incorrect tsunami
information. For the on-site tsunami detection, on-air acoustic typed tide gauge
[Goda et al., 2002] or on-site wave-overtopping sensors [Hiraishi et al., 2004] are
more recommendable. Figure 1 shows a concept of the GPS buoy tsunami detection
system.

3. Evaluation of NOWPHAS for Offshore Tsunami Detection

Figure 2 shows an example of tsunami transmission time estimation around the
Muroto-Misaki area facing the Pacific Ocean. In the area, the first deep-sea GPS
buoy system was installed in April 2004, 100 m deep and 13 km off the cape [Kato
et al., 2005]. The on-land station of the station was located at the wind measurement
tower of the Muroto-Misaki weather station of the Japan Meteorological Agency
(JMA). In the area, there also exists NOWPHAS seabed acoustic wave station 27 m
deep and the JMA tide station inside the Muroto-Misaki fishery port. Tsunami
transmission time from the offshore station to the coast is roughly estimated by
assuming that tsunami wave celerity is (gh)l" 2 where g is the gravity acceleration
(9.8 m/s?) and & is the local depth. In Fig. 2, tsunami transmission time was es-
timated from the JMA tide station by the inverse calculation, supposing that the
water depth is constant (5 m) inside the fishery port during the length of 500 m from
the entrance to the tide station, and the inverse tsunami travel line is linear from
the port entrance by neglecting the wave diffraction effects. As shown in the figure,
estimated tsunami transmission time between the NOWPHAS wave gauge and the
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NOWPHAS =
wave gauge ..

Fig. 2. Example of tsunami transmission time estimation.

tide station is about 5 minutes, and one between the GPS buoy and the tide station
is about 11 minutes.

Figure 3 indicates the estimated tsunami detection time at the existing
NOWPHAS wave stations. Time estimation at each station was conducted in the
same method shown in Fig. 2. Nevertheless, at some stations where detailed seabed
topography data was difficult to be obtained, more simplified estimation was con-
ducted from the information of the seabed sensor depth A, and seabed cable length
! of each station. Tsunami transmission time can be calculated by assuming the
topographical inclination ¢ is constant (¢ = h,/l). In Fig. 3, water depth at each
NOWPHAS station is shown in meter unit.

Three category of the tsunami transmission time is indicated in Fig. 3. At some
existing NOWPHAS station, tsunami attack can be detected 10 minutes or more
before arriving at the coast, which indicates that some of the existing NOWPHAS
stations are possible to use the real-time tsunami information system. Such stations
are seen where the seabed slope is mild and shallow water ares is spreading to
the offshore direction. On the other hand, some of the NOWPHAS stations will
observe tsunami 5 minutes or less before its arrival to the coast, where bottom
slope is relatively steep. Such existing NOWPHAS stations are not deep enough for
the earlier tsunami detection purpose. At such area, deeper GPS buoys are to be
installed.
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A less than 5 minites
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Fig. 3. Estimated {sunami detection time at NOWPHAS wave stations.

4. Examples of Hybrid Observations

2004 Tokaido-Off-Earthquake was generated at 23:57 JST on September 5, 2004, just
five months after the Muroto-Misaki-Off GPS buoy’s installment. The magnitude
of the earthquake was reported as 7.4, and the hypocenter of the earthquake was off
the Kisei-Penisula Pacific coast about 400 km northeast from the GPS buoyv. Before
the main earthquake, pre-event with magnitude 6.9 was also reported about five
hours before. The pre-event earthquake also caused a smaller tsunami.

Figure 4 shows the observed tsunami profile, eliminating high frequency wind
wave effects and low frequency astronomical tide effects by a numerical band-pass
filter [Kato et al, 2005]. Three observation stations exist at the Muroto-Misaki
area, one GPS buoy at 100 m deep, one NOWPHAS seabed installed typed acoustic
wave gauge 27 m deep, and one JMA coastal tide station inside the port at the
shore. Those three stations observed the tsunami profile clearly. Due to the pre-event
tsunami effect, low-frequency water level oscillation with periods around 8 minutes
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Fig. 4. Observed 2004 Tokaido-Off-Earthquake-Tsuanmi profile.

continued at the coastal tide station inside the port until the station observed the
main tsunami profiles.

The tsunami wave started from the sea level rise around 0:26 JST at the GPS
buoy. Peak time of the first tsunami wave was 0:31, 0:32 and :40 respectively at
each station, and the first tsunami height (deviation) was 10 c¢m, 22 ¢cm and 41 cm
respectively. GPS buoy 100 m deep detected the tsunami profile 9 minutes before
the coastal tide station, which proved the high possibility of the deep water GPS's
contribution of the tsunami disaster prevention for inhabitants’ rapid evacuation, if
the real-time warning information system was put into practical use [Nagai et al.,
2005D).

Slight differences are seen in the expected and observed tsunami detection time
by comparing Figs. 2 and 4. Figure 2 indicates that the offshore GPS buoy is ex-
pected to observe the tsunami profile 11 minutes before its coastal arrival, while
Fig. 4 shows 9 minutes arrival time difference. And Fig. 2 indicates that the off-
shore NOWPHAS wave gauge is expected to observe the tsunami profile 5 min-
utes before its coastal arrival, while Fig. 4 shows & minutes arrival time difference.
Several reasons of the difference can be considered. Figure 2 neglects the three-
dimensional effects of the tsunami propagation. Tsunami waves are supposed to
propagate in one single direction without receiving diffraction. Figure 2 also neglects
the tri-dimensional multi-passes of the tsunami propagation. For further discussion
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to explain the tsunami propagation time difference between Figs. 2 and 4, future
detailed tri-dimensional numerical simulation will be desirable.

Figure 5 shows the result of spectrum analysis of the Murcto-Misaki 2004-
Tokaido-Off-Earthquake-Tsunami record. Figure 5 indicates coastal tsunami trans-
mission characteristics due to the seabed topography effect. At water depth 100 m,
the tsunami frequency spectrum was double peaked shape with one peak 0.0013 Hz
of corresponding period 13 minutes and the other peak 0.002 Hz of corresponding
period 8 minutes. Both peaks were almost equivalent in the spectrnm power. At the
27 m deep observation station, both of the two peaks showed amplification almost
in the same rate. Therefore, tsunami profiles 100 m deep and 27 m deep showed very
similar shapes, although amplification was observed due to the long wave shoaling
effect. On the other hand, coastal tide station spectrum showed single peaked fig-
ure, for amplification of the higher frequency peak was much more obvious than the
lower frequency one. Obvious peak was seen at the tide station at the frequency of
0.002 Hz. It was supposed to be the natural resonance frequency inside the port.

Applicability of the GPS buoy to typhoon induced high sea waves observation
was also verified for high wave condition due to the typhoon No. (0423 attack. Peak
significant wave height was obtained as 14.21 m with significant period 16.3 s at
14:20 (JST) on October 20, 2004. Simultaneous wave record by the same seabed

10 * p - |
E Power Spectrum (n) (2004/09/06 ) ‘p‘ 3
YN | SAN /\ ]
Z1o °k - :
E V \f\
S 10°* | ; /
by E 7""' N
10~ F /
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10~* —— :NOWPHAS (h=27m)
------ :Tide St.
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Frequency (Hz)

Fig. 5. 2004 Tokaido-Off-Earthquake-Tsuanmi spectruin analysis.
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installed acoustic wave gauge at 27 m deep showed significant wave height 13.55 m
with significant period 15.8 s. As both wave records showed fairly good agreement,
it can be concluded that both wave data are reliable ones [Nagai et al., 2005¢].

5. Proposal Tsunami Observation Network

Horizontal allocation of the sensors is also proposed. Figure 6 is the proposed offshore
observation network. Offshore tsunami sensors are to be installed with intervals of
about half-length of the tsunami wave source zone in order not to miss the tsunamij
data. Therefore, considering a possible horizontal scale of near-coast tsunami gen-
erating earthquakes [Hatori, 2004], tsunami detection stations should be installed
at intervals of 50-100 km along the Pacific coast as shown in Fig. 6.-Small islands
on the ocean are suitable points for long-distance tsunami detection, which will be
helpful for international tsunami disaster reduction.

Figure 7 is the applied plan of the Round-Indian-Ocean tsunami monitoring
network. In the area of Indian-Ocean, past tsunami records are not so clear like the
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Fig. 6. Plan of the round Japan tsunami monitoring network.
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Fig. 7. Plan of the round Indian Ocean tsunami monitoring network,

Japanese coasts. Therefore, possible tsunami source scale is more difficult to be set.
Here, considering that the source scale of the 2004 Sumatra-Off-Earthquake tsunami
was 500-1,000 km, tsunami detection stations should be installed at intervals of
about 300 km along the coast as shown in Fig. 7.

6. Tsunami Data Center Design

How to design the data center is also important because the data center has two
important functions; one is real-time data service and the other is non-real-time
data management, analysis and research. Time-stepped real-time tsunami detection
system is proposed in consideration that tsunami periods are generally very large
like several tens of minutes and tsunami warning is necessary before knowing the
first wave height and period of tsunami.

Figure 8 shows the data flow of the Data Center for observed tsunami, waves and
tides. The Data Center should cover two important functions together in order to
realize the cost efficiency of the system: real-time data processing and non-real-time
data management of information obtained by (1) the deep-sea GPS buoys [Kato
et al., 2001; Nagai et aol., 2004b], (2) the coastal acoustic wave gauges (DWDM:
Doppler-typed Wave Directional Meter) already installed as a nationwide network
[Nagai, 2002], and (3) on-site coastal sensors network such as the existing fuse-type
or acoustic-type coastal tide stations [Goda et al., 2002, or on-site wave overtopping
meter [Hiraishi et al., 2004].

Figure 9 shows three steps of the tsunami information time history. Tsunami
information should be issued by time series, for tsunami periods are several tens
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Fig. 8. Wave, tsunami and tide data system.
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Fig. 9. Time series of tsunami detection information.

minutes. In order to make maximum use of the offshore tsunami sensors advantage,
capable to observe tsunami profile about 10 minutes before at the coast, offshore
tsunami information data service cannot wait until the offshore sensor finishes to
observe the complete figure of the first tsunami wave with its height and period.
Here authors propose the three time stages of the offshore tsunami data service.
The first stage information is when the low-pass-filtered water level exceeds some
critical value from the estimated astronomical tide level. At the first stage informa-
tion, offshore tsunami height and tsunami period are not yet known. It is the warning
information about abnormal low frequency wave and possible tsunami wave, is iden-
tified. At the first stage, exact tsunami amplification rate from the offshore station
to the coast is not also known, for the amplification rate depends on the tsunami
period. Table 2 is the proposed critical values, supposing that tsunami wave height is
proportional to the inverse of 1/4 exponent of the water depth. In addition tsunami
waves are supposed to break when the tsunami wave height is greater than half
of the water depth, and the critical tsunami height at the coast is supposed to be
1 m. It means that the critical water deviation shown in Table 2 is equivalent to
the tsunami deviation of 1 m at the water depth 2 m. The superposition of the
critical tsunami height 1 m at the coast may not be sufficient value for the complete
tsunami disaster prevention, for the lower tsunami may also cause human damage.
On the contrary, the superposition demands very accurate data processing in order
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Table 2. Proposed critical off-
shore sea level deviation values.

GPS bouy  Critical water level
depth (m) deviation {cm)

10 65
20 55
50 45
100 35
200 30

to avoid incorrect tsunami information. If the offshore GPS buoy is installed at a
depth of 200 m, critical value of the low-pass-filtered deviation should be only 30 cm,
even in the rough sea states with high frequency wind wave heights of several meters.
Therefore, Table 2 also shows the demanded precision of the tsunami wave detection
filtering techniques.

The second stage information in Fig. 9 is when the offshore sensor observed
the peak value of the low-pass-filtered water level. It means when 1/4 of the first
tsunami wave period was supposed to be observed. By receiving the second stage
information, it will be possible to roughly estimate the tsunami first wave’s period
and deviation along the coast. Tsunami amplification rate from the offshore sensor
to the coast should be calculated with the help of numerical simulation in advance.
If the offshore GPS buoy is able to detect the tsunami profiles 10 minutes before the
tsunami arrival to the coast, offshore GPS buoy is also able to obtain the information
10 minutes before the time when on-shore tsunami exceeds that of the critical sea
level and records the maximum sea level, respectively. Therefore, proper design of
immediate warning information system is very important at each time stage shown
in Fig. 9.

The third stage information in Fig. 9 is when the offshore sensor observes the
total first tsunami wave defined by the zero-cross wave analysis. If the tsunami wave
starts from the positive water level (starts from the onshore current), zero-up-cross
analysis should be applied assuming that the first zero-up-cross point is when the
low-pass-filtered water level begins rising. On the other hand, if the tsunami wave
starts from the negative water level (starts from the offshore current), zero-down-
cross analysis should be applied assuming that the first zero-down-cross point is
when the low-pass-filtered water level begins to sink. The third stage information
will give us the complete offshore first tsunami wave height and period.

7. Concluding Remarks

Development and improvement of the International Tsunami Monitoring System is
getting more important after the 2004 Sumatra-Off-Earthquake Tsunami disaster.
This paper intends to contribute to the international efforts to prevent tsunami dis-
asters by using our experiences in offshore tsunami, wave, and tide observation and
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network data analysis. Till now, tsunami monitoring system was developed and es-
tablished based on earthquake vibration observation data only. Nevertheless, earth-
quake vibration data may give us incorrect tsunami forecasting, for the strength of
the vibration and the tsunami energy are not exactly proportional. Therefore, off-
shore and coastal tsunami-wave profile observation system should be included in the
monitoring system. This paper introduced basic design of the future tsunami moni-
toring system using newly developed GPS buoy system and other coastal and on-site
sensors. A new method of tsunami data processing system was also introduced.
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A GPS buoy operating about 10 km west of Cape Muroto, southwest Japan, recorded the tsunami due to the
2010 Central Chile Earthquake (M 8.8) that occurred on 27 February, 2010. The tsunami due to the Chile
Earthquake arrived at the GPS buoy almost one day after the earthquake. The first peak of the tsunami was about
12 cm above the mean sea level. The second peak arrived about one hour and 46 minutes later and was about
20 cm higher than the mean sea level, which was the highest peak among the series of the tsunami waves. The

later phases of recognizable tsunami waves continued

for about one day after the first arrival of the tsunami.

Comparison of these tsunami records with numerically-predicted tsunami suggests that the observed tsunami
arrived about 30 minutes later than the arrival time predicted by the numerical simulation. If we manually shift

the record on the time series, we find that a longer term

of about 1 hour period components fit very well whereas

a shorter term of 10-30 minutes of tsunami components shows significant phase shifts. This difference of phase
shifts might be due to the effect of dispersion of the tsunami wave.
Key words: GPS, RTK, tsunami, GPS buoy, Chile tsunami, numerical simulation.

1. Introduction

A large interplate earthquake of M\, 8.8 occurred along
the Chile trench at 06:34:14, 27 February, 2010 (UTC), ac-
cording to USGS, which is at 15:34:14 on the same day
by Japanese Standard Time (JST). A significant tsunami
was generated by the earthquake and travelled across the
Pacific Ocean arriving at the Pacific coast of the Japanese
Islands almost one day after the earthquake. The tsunami
was recorded by a number of sea-level measuring instru-
ments that have been deployed in the whole area of the Pa-
cific. Here, we show the record obtained at the GPS buoy
sited near Cape Muroto, southwestern Japan, and we com-
pare the observed record with the record estimated by a nu-
merical simulation.

2. History of the Development of the GPS Buoy
For over 12 years we have developed the GPS buoy for
detecting tsunami given that the early detection of tsunamis
contributes to mitigating tsunami disasters (e.g., Kato et al.,
2000, 2008). The system employs a real-time kinematic
(RTK) GPS in which a GPS antenna is situated at the top of
a buoy floating on the offshore ocean surface, while another
antenna is situated at a ground base station near the coast
(Fig. 1). A sampling frequency of 1 Hz is used to monitor
the sea surface changes. The data obtained at the buoy is
transmitted to the ground base station using radio and a

Copy right© The Society of Geomagnetism and Earth, Planetary and Space Sci-
ences (SGEPSS); The Seismological Society of Japan; The Volcanological Society
of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sci-
ences; TERRAPUB.
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baseline analysis is made in real-time by a PC using both the
buoy data and the data taken at the base station. Assuming
that the coordinate of the base station is known, the precise
position of the buoy can be determined to better than a few
centimeters of accuracy.

The determined positions of the buoy applies not only
to the case of a tsunami but also for all kinds of sea sur-
face changes including wind waves, tides, etc. In order to
extract the relevant components of a tsunami, the record is
applied with a low pass filter using a simple moving aver-
age of 120 seconds. Tides are also removed by subtract-
ing a tidal component calculated using harmonic analysis
of 90 days of data at the position of the buoy. Since the
accuracy of such a harmonic analysis would be a few cen-
timeters if no anomalous sea surface deviation occurs such
as that due to the passage of low pressure or variations of
current, tsunami data can be extracted with a certain accu-
racy if the tsunami perturbation exceeds a few centimeters
(e.g., Shimizu et al., 2006). Both long period and shorter
period waves are communicated via the dedicated webpage
(http://www.tsunamigps.com/gpsreal.php).

The operational system was first deployed off Ofunato,
northeastern Japan, in 2001. This system successfully
recorded two tsunamis due to the June 23 (UTC) 2001 Peru
earthquake (M, 8.4) and the September 25 (UTC) 2003
Tokachi-Oki earthquake (M, 8.3). Both records showed
clear tsunami wave traces with about 10 cm of maximum
height. After three years of operation, the system was abol-
ished and a new GPS buoy was established about 10 km
south off Cape Muroto, southewestern Shikoku, Japan, on
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Fig. 1. GPS buoy system for detecting tsunami. RTK-GPS is employed
together with radio transmission and an internet dissemination system,
so that anyone can observe tsunami in real time.
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Fig. 2. Location of the GPS buoy established about 10 km west of the
Cape Muroto (upper left inset). Stations colored in dark brown are used
for Fig. 5.

April 11 2004. The buoy recorded the tsunami due to
the September 5 (UTC) 2004 Off Kii Peninsula earthquake
(M 7.4) (Kato et al., 2005). This system sank as a result
of an accident in March 2006 and a new GPS buoy was es-
tablished in April 2008. The current GPS buoy is now oper-
ational at about 10 km west of Cape Muroto, southwestern
Japan. The location of the buoy is shown in the inset of
Fig. 2 and the design of the buoy is shown in Fig. 3. The
distance between the buoy and the land base station is about
13 km.

The Ministry of Land, Infrastructure, Transport and
Tourism (MLIT) has established a GPS buoy system for
monitoring sea waves, with eleven GPS buoys along
the Pacific coast of Japan, since the year 2008 as a
part of the Nationwide Ocean Wave information net-
work for Ports and HArbourS (NOWPHAS) system
(http://www.mlit.go.jp/kowan/nowphas/). All of these GPS
buoys are located within 20 km from the coast. More than
14 GPS buoys have been established in this project, of
which twelve buoys are in place and in operation along the

Fig. 3. GPS buoy established west of Cape Muroto, southwest Japan. The
system has been operational since April 2008. (left) photo, (right) plan
(unit: mm).

Fig. 4. Location of the 2010 Chile Earthquake shown by an asterisk and
the estimated vertical displacements. See text for the source parameters.

pacific coast of the Japanese Islands as of February 2011
(Fig. 2).

3. Tsunami Record due to the 2010 Chile Earth-
quake

The 2010 Central Chile earthquake generated a signifi-
cant tsunami. In order to make numerical simulations, we
employed the USGS source model and assumed the follow-
ing fault parameters: source dimension (L x W) (450 km x
100 km), dislocation (15 m, uniform), mechanism (Strike,
Dip, Rake) = (16, 14, 104) referenced to the USGS model.
Figure 4 shows the source location and the vertical defor-
mations due to the earthquake, which was used for the nu-
merical simulation of the tsunami propagation.

Figure 5 shows the observed tsunami record of the low-
pass filtered component of the vertical sea surface change
at the Muroto GPS buoy. The effect of tide is also removed
from the filtered record. It is readily visible that the tsunami
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Fig. 5. Recorded vertical motion of the GPS buoy during the tsunami

(black) and simulated record (red). The simulated record is offset for-
ward by 26 minutes.

due to the Chile Earthquake arrived at the GPS buoy at
around 15:22 on 28 February (JST), which is nearly one
day after the earthquake occurred. The first peak of tsunami
is about 12 centimeter above the mean sea surface height.
The second peak arrived about one hour and 46 minutes
later with about 20 cm height, which was the highest peak
among the series of tsunami waves. The later phases of
recognizable tsunami waves continued for about one day
after the first arrival of the tsunami.

4. Comparison with Numerically Simulated Data

The tsunami record was compared with a numerically-
simulated tsunami after removing shorter and longer pe-
riods of waves. The numerical modeling of mid-ocean
tsunami propagation was carried out using the finite differ-
ence method of the linear shallow-water wave theory with
a Coriolis force in a spherical co-ordinate system (Nagano
et al., 1991). For tsunami modeling, we used the digi-
tal bathymetry data (GEBCO; Monahan, 2008) to resample
and created a 5 arc-min grid. The modeled tsunami wave-
form at the GPS buoy is shown in Fig. 5 with the plot of the
observed record after tide and wind-wave components have
been removed.

Note that the modeled tsunami waveform has been manu-
ally shifted by 26 minutes to fit to the observed one, because
a direct comparison suggested that the observed tsunami ar-
rived about 26 minutes later than the arrival time predicted
by the numerical modeling. We find that the longer period
components of the tsunami of about 1 hour fit very well
whereas the components of a shorter period of 10-30 min-
utes show significant phase shifts. The difference in arrival
times of about 30 minutes is under investigation by con-
sidering various factors such as the sea bottom topography
features on the path of the tsunami propagation, the spa-
tial resolution of gridding, modeling errors, etc. The reason
that the longer wave fits well with 30 minutes of phase shift
while a shorter wave does not may be due to the effect of
dispersion of the tsunami wave resulting in the longer wave
propagating more rapidly than a shorter wave. Slip hetero-
geneity of the source might also be responsible for such dis-
persion, though the examination of these effects are left for
future studies.
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Fig. 6. Comparison between observed (black) and simulated tsunami

(red). About 30 minutes of offset may be seen for all of the stations.
The reason for this offset is under investigation.

The GPS buoys of the NOWPHAS system at
eleven sites also recorded tsunamis with 20 to
30 centimeters of maximum height (see also:

http://www.mlit.go.jp/kowan/nowphas/). The tsunami
record is processed similarly as the record taken at the
Muroto GPS buoy (Kawai ef al., 2010). Comparisons
of the NOWPHAS records with the numerical model
are conducted at eight NOWPHAS buoy stations: East
Off Aomori, Off Central Iwate, Off South Iwate, Off
North Miyagi, Off Central Miyagi, Off Owase, SW Off
Wakayama, and West Off Kochi. The results are shown
in Fig. 6. These results indicate a similar tendency as the
record at the Muroto GPS buoy shown in Fig. 5.

5. Discussion

The GPS buoy system introduced in this study success-
fully detected the tsunami due to the 2010 Chilean Earth-
quake. Its amplitude and phase are generally consistent
with the predicted tsunami waveform. However, there are
some inconsistencies with the simulated data. First of all,
the arrival time of the tsunami was about 30 minutes later
than the predicted arrival time. This difference was unani-
mously observed at all GPS buoys that are established along
the Japanese coast. Comparisons by other studies (e.g.,
Satake et al., 2010) show similar results.

The difference of arrival times of about 30 minutes may
have to be investigated by considering various factors such
as the water depth model, the spatial resolution of gridding,
modeling errors, as well as the source location. The pre-
diction of tsunami heights is fairly consistent with observed
heights, suggesting that the prediction of inundation height
at the coast may be made with considerable precision. Fur-
ther improvements of the numerical simulation may be nec-
essary for a better prediction of tsunami arrival time and
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the differential effects of arrival times due to dispersion be-
tween long period and short period sea waves.

When a comparison between a numerical simulation and
observation is being carried out, one significant advantage
of a GPS buoy compared with a coastal monitoring system
such as tide gauges is that the GPS buoy is less affected than
tide gauges by local geomorphological effects or non-linear
effects due to basal friction, etc. Moreover, a GPS buoy can
record not only tsunami but also wind waves. Therefore, a
GPS buoy can be utilized for daily sea surface monitoring,
and not just for tsunami.

Currently, the GPS buoy system uses RTK-GPS which
requires a land base for the precise positioning of the buoy.
This limits the distance of the buoy from the coast to, at
most, 20 km. Establishment of the buoy further from the
coast is truly important to achieve a longer lead-time for
evacuating nearby coasts. There are two problems to be
solved in this regard; one concerns accuracy and the other
data transmission. Since tsunami amplitudes decrease as
water depths become larger, the detectability requirement
of a GPS buoy is more demanding in deeper ocean. If the
distance of a GPS buoy from the coast is larger, currently
used RTK-GPS may not achieve centimeter accuracy. We
are trying to introduce another algorithm for solving this
problem. One possibility is the so-called precise point po-
sitioning algorithm in which a baseline is not used for esti-
mating the position, but only a single station is used (Geng
et al., 2010a, b). We are now testing if such an algorithm
can achieve centimeter accuracy in the current GPS buoy
system.

Another problem of deployment further from the coast
would be data transmission. Currently, we are using radio
for data transmission. Since we use a dual radio band, data
transmission is very reliable; data have been acquired with-
out loss of lock in rough water, even close-by the passage of
a typhoon. However, radio transmission would not be fea-
sible, if the distance of the GPS buoy is far from the coast,
say more than 50 km. Satellite data transmission would
be more reliable in such a situation. However, such satel-
lite data transmission is still not cost-effective. Future cost
reduction of satellite data transmission is truly needed for
earlier tsunami detection.

6. Conclusion and Remarks

The GPS buoy that has been operated nearby Cape
Muroto, southwest Japan, successfully detected a tsunami
due to the February 2010 Chile Earthquake. The maximum
amplitude of the tsunami was about 20 cm from crest to
zero in height. The tsunami had also been recorded at all
the other GPS buoys established as part of the NOWPHAS
system along the Japanese coast.

In order to use a GPS buoy for tsunami disaster mitiga-
tion, however, there are still some problems to be solved.
One such problem is that the numerically simulated record
predicted tsunami arrived about 30 minutes earlier than the
observed tsunami. The causes of such a difference require
clarifying and numerical simulation modeling should be im-
proved. Also, the deployment of buoys further from the
coast is indispensable for earlier detection and the evacua-
tion of people. When such problems are solved, an array of

GPS buoys for monitoring tsunami will provide us a pow-
erful tool for mitigating disasters due to tsunami.

Finally, a very large earthquake of M, 9.0 occurred
offshore of the northeastern part—known as Tohoku—of
Japan and a huge tsunami of more than 30 meters of run-
up heights devastated the whole area along the Pacific coast
of Tohoku. The earthquake and tsunami caused more than
20,000 people to be accounted as dead or missing. The GPS
buoys that were deployed a few years before the earthquake
by the Minstry of Land, Infrastructure and Tourism (MLIT)
recorded significant tsunami higher than 6 m at the offshore
South Iwate (near Kamaishi City) before its arrival at the
coast (Takahashi et al., 2011). The records at the GPS buoys
were monitored at the Japan Meteorological Agency and led
to an updated tsunami early warning of more than 10 meters
at the coast. Detailed investigations of the tsunami and the
effectiveness of the GPS buoys are still underway and will
be reported elsewhere.
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ABSTRACT

A new tsunami observation system has been developed, which employs
an RTK-GPS technique to detect and monitor a tsunami in real-time manner
before it reaches the coast. The GPS antenna attached on the top of a buoy
floating at the sea surface is one of the important apparatus in this system.
The estimated positions of the antenna includes not only tsunami but also all
kinds of sea surface changes including wind waves, tides etc. The low pass
filter is used for extracting tsunami.

After a series of preliminary experimental studies, the operation-oriented
experiments were conducted at two offshore sites. These systems succeeded
to detect three tsunamis whose amplitudes are nearly 10cm. They are 23rd
June 2001 Peru earthquake, 26th September 2003 Tokachi earthquake and
Sth September 2004 Kii earthquake. These results showed that the GPS buoy
is useful for early detection of tsunami. The Ministry of Land, Infrastructure,
Transport and Tourism (MLIT) has established the GPS buoy system for
monitoring sea waves with twelve GPS buoys along the Pacific coast of
Japan since the year of 2007. The experimental GPS buoy that was
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established off Cape Muroto, Southwest Japan, is continuously operating
until now. These systems also succeeded to detect 28th February 2010 Chile
earthquake and 11th March 2011 Tohoku-Off earthquake tsunamis.

Currently, the GPS buoy system uses a RTK-GPS which requires a land
base for precise positioning of the buoy. This limits the distance of the buoy
from the coast to, at most, 20km. There are two problems to be solved to
deploy the buoy for farther distance from the coast: one is that positioning
accuracy decreases as the distance increases and the data transmission by
radio becomes difficult for a long distance. The improved RTK method and
400MHz radio system for 50km long baseline in the Muroto GPS buoy are
under examination. Moreover; introducing a new algorithm of precise point
positioning with ambiguity resolution method is also planned for 100 km
offshore observation.

KEYWORDS: GPS, Tsunami, Precise positioning, Real-time monitoring

1. INTRODUCTION

If a buoy with a sensor for detecting the sea surface height change is set offshore distant enough from the
coast and the data are transmitted in real-time, detection of a tsunami can be effectively used for disaster
mitigation. We have developed a GPS buoy for this purpose, in which a GPS antenna is equipped at the top of a
buoy floating at the sea surface (Kato et al., 2000). Real-time kinematic (RTK) GPS technology has been used
for dissemination of data. A GPS antenna is placed on top of a stable buoy at sea, and the variations of the sea
surface relative to a stable location on land can be monitored as shown in Fig. 1. The vertical motion of the buoy
is most important for tsunami detection and some detection algorithm is required to effectively detect tsunami
among other components of wind waves. Since the wavelength of tsunami is much longer than wind waves,
detection of tsunami is rather easy by applying simple low-pass filter such as 60-sec or longer than 100 seconds
of moving average. Remaining short period waves are also to be used for monitoring wind waves of sea surface,
which is also very important for monitoring daily sea surface.

L
Base S GPS Tsunami

Station .~ T Meter
i L

Figure 1. Concept of GPS tsunami monitoring system.

2. GPS TSUNAMI METER

2.1 Sagami Bay Experiment

The first prototype GPS buoy was made in 1997 and a basic experiment was successfully
conducted nearby Aburatsubo in the Sagami Bay, about 50km south of Tokyo, Japan (Kato et
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al., 1998). We employed a RTK GPS technique in this case such that the obtained carrier
phase data were first sent from the base station to the buoy to be processed in the buoy and the
obtained results were then transmitted backward from the buoy to the base station. The
experiment showed that this tsunami detection system could measure the displacement of sea
level in the accuracy of several centimetres.

38 m

ey

N

/ Sensor Buoy / Support Buoy

GPS antenna cable

14 rope

$22 wire rope
2t sinker of concrete
19 stud link chaln

18 m

Figure 2. Experimental set up at Sagami Bay.

Then, we developed the second buoy system in which dual buoy system as shown in Fig.
2 - a spur type buoy for GPS sensor and a larger buoy for a receiver and other equipments -
was employed (Kato et al., 2000). GPS antennas are mounted at the top of each buoy. The
Support-buoy is designed to move with wind-wave and is equipped with GPS receivers, a
number of sealed lead batteries, a wind generator, solar panels for power supply, and a pair of
rand receiver and transmitter devices. The sensor buoy is a spar-type buoy about 8§ m long
designed to be resistant to wind wave motion (kelecy et al., 1994; Born et al., 1994). The
center of mass of this spar-type buoy is located at several meters below the sea surface, so that
the buoy react more to long frequency waves compared to the Support-buoy.

In order for the Support-buoy not to float away or rotate, it has to be anchored by tri-
directional sinkers. On the other hand, the Sensor-buoy although connected to the Support-
buoy with an antenna cable should be free from any tension as much as possible, other than
sea-surface displacement. Thus, the Sensor-buoy is loosely tied to the supporting ropes The
float at the farthest end from the Support-buoy is anchored by a single sinker.

The data taken at the Support-buoy and the Sensor-buoy are first stored and processed in
GPS receivers installed on the Support-buoy. Then the processed data are transmitted to the
land base by 429MHz radio transmissions. The transmitted data (position of GPS sensors) are
monitored and stored in the PC at the base station. Although the experiment of this type was
successful, we decided that we would not use the system considering that such complicated
system may not survive in the rough water in an outer ocean.
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2.2 Ofunato Experiment

After a series of preliminary experimental studies, an operation-oriented experiment was
conducted offshore Ofunato city, northern Tohoku, Japan, from 2001 to 2003. Fig. 3 shows
the GPS buoy system (Kato et al, 2001). The buoy has been anchored at (39°00'36" N,
141°47'06" E), which is 1.6 km away from the coast of Ofunato city. The water depth at the
buoy is about 50 m and the buoy is anchored with tri-directional 57 ton anchors with an
intermittent depth sinker. The horizontal movement of the buoy is thus limited to within the
circle of about 20 m of diameter. Numerical simulation of the buoy’s ability to track vertical
displacements of the sea surface long wave shows that almost any possible sea surface
displacement will be reflected by the vertical position of the buoy. Therefore, the buoy may
move sufficiently freely to detect a considerable tsunami, though a small correction may have
to be made for accurate estimation of wave height changes.

GPS antenna was set at the top of a buoy and 1-sec sampling data were transmitted to the
ground base of about 1.6km distance. The data was processed at the ground base and the
estimated 3D positions were disseminated through internet. In this experiment, a simple low-
pass filter that uses 60-second moving average was first applied to the data. As our ultimate
goal is to be able to detect a tsunami and establish the tsunami warning system, the estimated
position of the buoy is further transmitted to the city hall and the fire station of the city for
real-time viewing. Data can also be monitored and downloaded through a web page.

Ofunato City Hall
& Fire Station 4

Ofubata Port

(funato Bay o

GRS buoy

141° 47" 06" N
39" 00" 36" E

Pacific Docean

Off Ofunato, Water depth:50m
W:12tonH:8.2m®:2.8m

Figure 3. GPS Tsunami Meter at Off-Ofunato.

This system succeeded to detect two tsunamis of about 10cm in vertical amplitude: 23rd
June 2001 Peru earthquake (Mw&8.4) and 26th September 2003 Tokachi earthquake (Mw8.3)
as shown in Fig.4 and Fig.5 respectively. The GPS observation data and the fuse -typed tide
gage data operated by Japan Meteorological Agency (JMA) are shown in both figures. And,
these tide gage data are plotted under 20 cm of the GPS observation data for comparison easy.
Both records showed good agreement in the tsunami profile and the GPS tsunami meter has
detected tsunami several minute earlier than a tide gauge.
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Figure 4. Peru earthquake tsunami on 23rd June 2001.
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Figure 5. Tsunami due to Tokachi-Oki earthquake on 26th September 2003.
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Also, observed Ofunato-off GPS buoy data were compared with nationwide coastal wave
observation network data. Fig.6 shows the results of spectrum analysis of the Ofunato-port
2003 Tokachi earthquake tsunami (Nagai et al, 2005). Four different simultaneous tsunami
records were compared in the figure. Fig.7 shows frequency response function based on the
offshore GPS buoy, obtained from the Fig.6. Frequency response function was defined as the
power spectrum ratio, meaning that tsunami amplification ratio between offshore station and
costal tide station. Frequency response function varied due to seabet topography induced
natural frequency (Nagai et al., 2004a). Pressure gauge-2 shows obvious amplification at the
frequency 0.0004 Hz, corresponding to 42 minutes wave period, which was supposed to the
harbor natural frequency inside the breakwater. It was concluded that GPS buoy successfully
observed ocean waves with wide frequency ranges from wind waves with a few seconds
period to astronomical tides with one or half day period, including tsunamis and storm surges.
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Figure 6. Tsunami spectrum analysis. Figure 7. Tsunami spectrum response analysis

2.3 Muroto Experiment

After the successful experiment in Ofunato, a newly designed system was established
about 12.6 km south of Cape Muroto, southwestern Japan in early April 2004 as shown in Fig.
8(a). The water depth is about 95m. The GPS buoy system is similar to that used offshore
Ofunato. However, considering more practical application to tsunami disaster mitigation, it is
designed to survive for more harsh oceanic environments for offshore than the case of
Ofunato. The data are acquired on board the buoy at a one second sampling interval and are
transmitted in real time by radio to the ground base. The ground base also has a GPS
instrument and RTK processing is done at the ground base. RTK processed positions of the
buoy are first applied by low-pass filtering using a simple moving average technique and are
then forward to web server for real time monitoring of the change of sea-surface using VPN
(Virtual Private Network) technology. The web page was redrawn every 30 seconds.
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Figure 8. GPS Tsunami Meter at Off-Muroto (http://www.tsunamigps.com)

The buoy has experienced nearby passages of several typhoons with the maximum wave
of about 20 meter in height and has shown a total integrity for an operational use. On
September 5th 2004, a large earthquake of Mw7.4 occurred about 200km east of the buoy and
generated significant tsunami. As shown in Fig. 9, the GPS buoy successfully recorded the
tsunami with about 10cm of vertical amplitude at the first peak arrival of about 10 minutes
before its arrival at the nearest coast of Cape Muroto (Kato et.al, 2005). Fig.9 also indicate
that the simulated record has shown excellent consistency with the observed tsunami,
suggesting high potential for predicting tsunami height at the coast before its arrival, if the
record is efficiently implemented in the tsunami warning system. The research and
development are continuously performing at Muroto experimental site. The newly developed
buoy and other equipments were deployed in the middle of April 2008 to the west from the tip
of the Muroto Promontory as shown in Fig. 8(b). The water depth of the site is about 136 m.
The ground base was set at 50 km distant from GPS buoy to develop a new GPS positioning
method for long baselines. Moreover, a ground base at 13km distances is operating for real-
time tsunami data observation on internet web site (http://www.tsunamigps.com). The system
also succeeded to detect tsunamis due to 28th February 2010 Chile earthquake (Kato et. al,
2011) and 11th March 2011 Tohoku-Oki earthquake. The observation tsunamis were shown
in Fig. 10 and Fig. 11 respectively.
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Figure 9. Tsunami due to Off Kii Peninsula earthquake on 5th September 2004.
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Figure 10. Tsunami due to Chile coast earthquake on 27th February 2010.
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Figure 11. Tsunami due to Tohoku-Oki earthquake on 11th March 2011 (Muroto GPS buoy).

Figure 12. Locations of NOWPHAS GPS Buoys established by MLIT.

2.4 Implementation NOWPHAS

The developed GPS buoy system is also capable of monitoring sea waves that are mainly
caused by winds. Only the difference between tsunami and sea waves is their frequency range
and can be segregated each other by a simple filtering technique. Given the success of GPS
buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave
information system for Port and HArborS (NOWPHAS) by the Ministry of Land,
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Infrastructure, Transport and Tourism of Japan (MLIT). As shown in Fig.12 they have
established more than twelve GPS buoys along the Japanese coasts and the system has been
operated by the Port and Airport Research Institute. These GPS buoys along the coast of the
Pacific Ocean also detected tsunamis due to Chile earthquake (Kato et.al, 2011) and Tohoku-
Oki earthquake.
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Figure 13. Tsunami due to Tohoku-Oki earthquake on 11th March 2011 by a GPS buoy.
Real time 24hr data of GPS buoy at Off South Iwate (Kamaishi)
(http://www.mlit.go.jp/kowan/nowphas/ )

3. TOHOKU-OKI EARTHQUAKE TSUNAMI

A giant earthquake of Mw9.0 occurred offshore Tohoku District, northeast Japan, and
devastated the whole area surrounding the Pacific Ocean. An enormous tsunami generated by
the earthquake caused more than 20,000 people of deaths and missing in the area. Fig. 13
shows the real-time tsunami records of 11th March 2011 Tohoku-Oki earthquake tsunami
observed by GPS buoy of NOWPHAS at the Off South Iwate (Kamaishi). Over 6 m tsunami
height is observed. The Japan Meteorological Agency which observed this data updated the
level of the tsunami warning to the greatest value, as the height of the tsunami at the coast
will be much exaggerated to the observed tsunami in the offshore. After the highest wave was
observed, real-time distribution of the tsunami data stopped suddenly. Since the data of all
GPS buoys installed in this area stopped at once, it was anticipated that the cause is
interception of a communication network by electric power loss. However, as the backup
power supply worked effectively at the each land base stations, recordings of the tsunami
were continued. Fig. 14 shows the examples of full wave form recordings of Tohoku-Oki
earthquake. Almost all of the observation sites of NOWPHAS successfully recorded the full
wave form of tsunamis.
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Figure 14. Tsunamis due to Tohoku-Oki earthquake on 11th March 2011 by GPS buoys.

4. CONCLUSION AND REMARKS

A tsunami monitoring system using a GPS buoy has been developed for more than
fourteen years. This system provides that tsunami can be measured in the accuracy of several
centimetres. The Ministry of Land, Infrastructure, Transport and Tourism (MLIT) is
promoting a national project of establishing GPS buoys along the Japanese coast. The real-
time tsunami data of 11th March 2011 Tohoku-Oki earthquake tsunami was observed by
these GPS buoys. The Japan Meteorological Agency utilized the data to update the tsunami
early warning before land communication was destroyed. And, the complete tsunami wave
form was obtained by using backup power supply at the land base. However, failure of the
communication network on land left a problem for the system to be solved in the future. In
order to solve this problem, for example, it may be necessary to use a satellite
communication. Robust system against power failure is essential for earthquake and tsunami
disaster prevention.

Currently, the GPS buoy system uses a RTK-GPS which requires a land base for precise
positioning of the buoy. This limits the distance of the buoy from the coast to, at most, 20km.
There are two problems to be solved to deploy the buoy for farther distance from the coast.
One is that positioning accuracy decreases as the distance increases and the data transmission
by radio becomes difficult for a long distance.

The improved RTK method and 400MHz radio system for 50km long baseline in the
Muroto GPS buoy are under examination. Moreover, introducing a new algorithm of GPS
data analysis - precise point positioning with ambiguity resolution method - is also planned
for a 100 km offshore observation (Geng et.al., 2010a,b). We are now testing if such an
algorithm can achieve centimetre accuracy in the current GPS buoy system.
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Since we use a dual radio band, data have been acquired without loss of lock in rough
water, even close-by the passage of a typhoon. However, radio transmission would not be
feasible, if the distance of the GPS buoy is far from the coast, say more than 50km. Satellite
data transmission would be more reliable in such a situation. However, such satellite data
transmission is still not cost-effective. Future cost reduction of satellite data transmission is
truly needed for earlier tsunami detection.
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Abstract

Progress of GPS application to crustal deformation researches has been reviewed from the stand
point of “Japanese University Congortium for GPS Regaarch” (JUNCQO). JUNCO was established in
1987 when a lot of dual frequeney GPS receivera were introduced abruptly under the national proj-
ects of earthquake prediction and voleanic eruption prediction. The consortium aimed to exchange
information on GPS research and to promote joint observational researches in Japan, Thus, a hum-
ber of cooperative observational studies have been conducted under the name of JUNCO since its
establishment. S8uch studies include not only domestic nationwide and local dense array campaign
observations but also international projects in Asian and Pacific regions, Later, as the Geographicsl
Survey Inatitute (now, Geaspatial Information Authority of Japan) established the nationwide GPS
observation network (GEQNET), edge cutting researches have been made using GEONET data.
The GPS technology is now becoming a fully-fledged technology. Due to the developments of other
satellite navigation systems other than GPS, these systems are collectively called as Global Navi-
gation Satellite System (GNSS), Given this new trend of technology, we may have to seek for a new
trend of applications of the technology. Some possible innovative applications to earth science are
discussed.

1. & L & K

GPS (Global Positioning System) {3EEEdLE LT 1970 E@> SEREN,, HEE G RERE T
hh, BOHREERY - FT2RERBTITH 7. RETHEDOML R Y AT ADPRESH, BEX AV
EER %, L h—AEe9iZ GNSS (Global Navigation Satellite System) &#H$TA X )ichoTEL Lo L, £
TREIMLERII SN LIZL 20T, HIZHL2WHED GPS EFERZ L T2, SEHIIESE [GPS K&
EE] KlboTEAZLbh20T0, TOREPLEFRIZHITZ GPS 2 AV BEESHOREOES: 58 L,
SHOTMHERZE>TALY, HL, TITHERBT LI [GPSRBEME]) QAL NI X 2RERETRE (,
HhSFTLBEARNGLE2— 18T 23LOTH S,

GPS MO TEOE L RRAFHOMIBER LN 1080 FHIHTH A, UBEEFALAORIPLICE »
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TSN T/ SERIES FIFIILA Y A5 ATHS (Figure 1 : e.g., Parkinson, 1979; MacDoran, 1979). 72
BAED X 5% xj\ HbOTIREL, BBHICHERT2 L) 2R VRPN RLDTHo LA, ThThH, TOGT
o T A LTHaMIZERLTEZ/A VLBI®RSLR Z &L hizizsaplo e, EAMRETCLMAZ I LLDT
Ho7z. 1980 -‘i:'s_'fC’-J'l':'III":HiJJ'lL"f 712 VLBI & SLR O&BEH Tha LE - T L. 1970 FEHIC FENRE" L LT
HMEEDRGHFCTERLALTL— 72 P22 A2 HBOFHEICL>TEEL TRELONF AL OHEHNTTH 2.
NASA #* CDP (Crustal Dynamics Project) % [ ?ﬁ“‘] FONI1978FEOZ ETHY, FZIKHELTOTL—}
Fr b=z A%, PTHIMEREHCTERLL I LT Y22 FThD.

SRR

" NAVSTAR

5L03AL POSTTIONING SYSTEM
FIELD LABDRATORY
g iUFH i RUSEE ATRELATON ELPER IMENT

Figure 1: GPS signal receiving system that had been developed by JPL (Parkinson, 1979).

—J, GPSIZ& - T, 1980 4E{CIEHEAD 104ETH o7/ L w21 %, Councelman and Gourevich (1981) (2t =
TuwibWw A TN AANE 2T om WE CREBHEEDTEETH D = LAUVRIE S L7 2 L2 6 Wil 98~ o
ISHOTREEIS R WIS E o T & BHERTHE, BRMEN - WYKXED T V—TIZLHHREVEONE Y
TholtbHoTEWES S, ZOZ V-T2 L) EAWO 2 FEHZEE GTT4000 B (SONY #H2) HHEN S
iz (Figure 2). ZOSEEIC L - THEREHIASER 2N, 10 km BEOBT 2, 3 em Ofk 1) 7 LREEEAHER S
e (FFHI, 1990a), 4 llﬂr:c WIEMZET GRIEER AT EEHE) TH PRESTAR LIFIEN A Lwv GPS %
FRIHFEERE RO E L & -7 (Sugimoto et al., 1989). HATIE LIES MR LIIZEIZ L U F - Twi
Loo, 1987 6], ditfto it s L CHEFH - KL Rpseitm o C o RBBLIC L S oz, 4
50 1 AR Bh B4 % B 3 /,/t W TH-76 LA, EAROKRE - DI 12— 100 BTV GPS S a5 A
ENAZbbhod, FELTHASNAOREWMI02 (H#1E 1 BEH O WM101 © Wild-Magnavox #£3)
40008D (Trimble #%), Mini-Mac 2816 (AeroService #:31) @ 3flid o 2 FkEERTH - /2, {':f!.{"#tf?)?-;-

'\-’*r Photograph 1 {2734

COSEBOIIEE AL HARD GPSWIEE I & o THOH TRELRER L o/ 72 GPS Om i ERT O Tk
LAY —TETWARENB5Y, Y Bern RZEIZTEE L TV 7z Bernese software DH3EHE T L & % Markus
Rothacher & Werner Gurtner @i X %> T Bernese software O OB SHEM A M L. iz k-
TEH ORGP THIEOBWILRBIRATE A2 L L& o
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Figure 2: The first GPS receiving apparatus that was introduced in Japan (SONY GTT4000). (Left) antenna,
and (Right) receiver. (Murata et al., 1990)

Photograph 1: GPS receiving sets that JUNCO initially introduced: (left) WM101 — picture of WM102 antenna
is inserted -, (center) 4000SD, (right) MiniMac 2816.

2. [GPS K¥ES] (LLBAREEBA

MR OEEBARIAIZ 2F 1T L2 1085 12, GPSHIEZHGEL L) ¥ Ub EIFShi-on [GPS
] THo, ZoOHEEAFT TR, BRTIEVREBEIERMESCLAFOHETH Y, Moy
[GPS —a—AL¥—| (0% (1985) —§ 995 (1993)) #FHTLAN, [GPSHfs] * %+ 4% K oiEidh
iTo7z 1987 EERNMEALFTC, INHEHWIEHT 542912 [GPS#MEE] ohTd KFEoMFHs
EHULZHBE S N0 [GPS KEEliE ] ©hHa. [GPS Klé | CR2EOUIEEDW 204 Ll e L
THifacti s Lo, B bile 7 At - AUmEAT it £ - ¢, BEx 2GRN % o o HIBERLLIC
BT 5 GPS M (F H A, 1990b: AMfl, 1990) & EFHH (GPS JAPAN : 1990 ~ 1994) (e.g., The Re-
search Group for “GPS JAPAN '90", 1990) % ¥ THh A, O L H i@ IERE X | T fi e e 7 i s G
100 %) SELAVFHOHAE AL Z ElE4d -7 (Japanese University's GPS Consortium, 1988; Figure 3). L
ML, Z0LIHLEBIEIELRERIBEOLOLL, WER 1200 EF B2 A HIA L LTRSS 2 R
BEHED A ¥ 75 Lot

GPS JAPAN FHENZIZEBN 2o ME S Y, Sl E - BEODI7ESE L 3LE LT GPS Bl # #ifii 5
ZblLol ZRADOED WING (Western Pacific Integrated Network of GPS) & 7% - THEL T { (Kato
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Figure 3: The first nationwide GPS array propoesed by JUNCO.

etal,1908). 7. $I—2@ [GPSAKEES]| OFL2EHE L THRARGTRALI B TEHES—DNEEOME
GPS BBl s hi-Z b abiFoha. BFERHEITIE 1975 FEOV LW B S L ol & 3 2 BHEEIZS(
SHNTHRBBEHMIIL T, 1978 EORTREAERE Mws.6) HERLE L THRBEIMNERLLL. 20
RSO X AR THE HEY -0l KEMEEHMPETICHAL T GPS OF vy ~A— YRl MG L 7. 1994
EEP BB ORIV EL LTERE2EWBMTH 2 L00, BRI TLL S NEEMENTIEIAL.
WEFHFROBE LTOAVLENAZ L Lo/ (Asanuma ef gl., 1994; Japan University Consortium for GPS
Research, 1994; GPS K54, 1995). GPS ¥ v ¥ ~— YEFTIHERINESH % v F LTLEH LRBSEFTORR
loTRBHEFLELESYRE, HRORZ CHBNEBLHBMEAT I LT THS. FITINLS
REMERALTEI -2 LrOMBESEHMELZY, PEORBNBLTo12), & 2WIZBTTEEEOB KT
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ERELLD, SORRFOLSLBREFAAELE TV LW THLY GPS £EROFEL VLT R Y OFEE
T Lt FELEOEBEFFEFIIL > TRIDEHSLTHWIRIVEFTORTLH D, FLKEOEE L OIHOE
Loty IOFTrA—-YEBNLAFEORIIRIBRERKFTHETET GPS (GNSS) HEZTo Ty a0
REDVFEPCDWY, HRTIRMEUTHEBLTVWIE LS Vb, FROBRFHI Y1 7OBALEES R
Z k5, Segall and Matthews (1997) -k o TRE ZWABMER S N~V a Y OFiEE BT Adki o al.
(1999) B A 7 OBATI L AZARIT A LI LA, &b, ZOBOF— 1L GPS 207 Tl { HEF—
FoftbhTwad, ZOFEEELE CORNLEFNFEIILRURRTAHFBERELALPICTELI DS,
HRTOBREHOIITIFEL LTEZORBRICTEIERT 2 E o2k dofe. RETCOSRMKTEN
BHREHONHELEHIZ 2006 EF CTREITVWEY, TOBRLUTARDFOBNEC GPS AEES 2 BEL
TAHRFRI V= TICL - T, SRALFHAVERENTYVE (e, FAEST GPS BE 7 -7, 2009)

IhoOEREBRNE oL AMREMORRIE, BEICERNAT ABIERR L L E L9, GPS OERITED
HEBE G 76 LA 1987 EH 5 1994 12 H TR, FIFEE [GPST%ES (GPS ¥ ¥HRU T Aa)] MRS h,
FORBIZGWL L FOBOERETFREED L I LHFNLHANTRNE N T, #1003 46, 1994 £0
MRALETHZOHRD GPS KRFEAL DLV BRENENT DB L (iR, 1993;it)l), 1994), Hirahara et al
(1994) 3 1Hz ¥ > 7 » 7 L2 HBHEBREOTEEER LTV A,

=%, LOL)RENEY - FEMXSEEM L TLET 2R0UFARI B TRBERFOMEL Ho 2. HizF—4
ORI THA LY A TOGEBRMBELE I &, ¥ ¥ A= BRI CHESHAOTHE—ICLoT "Fr7FF+#&
DMEINTEAEFE LW bddot FXENVILDTF—FA—RAV T FIFRELTVEVPT, Zak) 2KER
A=Y EE - IR - EELTWCORDPLVOERTH-TLELLS.

[GPS kgl e | DFEEZFIL Japanese University Consortium for GPS Research (B4 : JUNCQ) & L7325,
IRITYEFEEEAKE I B L AZBRIRE I UNAVCO (University NAVstar Consortium : $]5%%  Randolph
Ware X) E W H)HEBNTEITENEINESEILE-2L LD THA. F01 UNAVCO 2K E @ National Science
Foundation (NSF) % EFORETHTEOHTHHLTEMM L LTERL, RETLHRO GPS FROHLAGEHE
ELTHEELTwAEDIE~, BHEO [GPS KFES| H20L 2B HBLEE VB TWRVORLELDH,,
BHOFEREOLDOBBEND H FORVIIDVTELTAZIOL—HTIRZVWHEEDbRD, &8, [GPSAE
el OEXFLIZFEALDRLTLIMELTEOF, FRCRICHIHLAMERTOEES 1 b vicvn 200
R4 25BN HDIDNTEHB .

3. GEONET & HFE®O GPS %

E Bk 1080 F£IC A S L2 EASERIHE (GRAPES) & MK - ik H oBESHE (COSMOS-G2)
FHERE L7 (Sagiya et al., 1995; Mivazaki ef al., 1996). ZHh & OEEHIE 1996 Ei2fHe - HiFR ST GPS Ob-
servation Network (GEONET) LI AHMRIZHEEZ AL WIIERERIOBEL GPS R o
(Miyazaki et l.,, 1997, 1998). BB & 2 2EHIAOHBRIAFOTRIIBTIRELEREE o7,
GEONET 5l £ - T, HEFIRTRETARELHBOBEEH B b {BUNTCELI L L, GPS %
Ho BB O RIE S L OFEBRI SN "HhTd, Y0 TELBRLEL . DR L LENICBY
Tid [GPS RERS| & LTEROBHMER/REF - C2ERNETS v ) LBEMRI LR kot

GEONET 2L o Th AL SNAFALHBHENLRBRE LTI, RAO0-1 X2 FORER (eg, Heki ot al,,
1997; Hirose ef al., 1999), REERA 1 —V a3 OEH & B (Adki et al., 1999; Ozawa et al., 2002; Miyazaki
et al., 2004a; Fukuda et al, 2008) % EXBiTeERa2EAH5, Fr1-, ¥R+ &2 GEONET HElxdt, #hET
DHERBHTHL 0B I FIIMEATIHz > 7 » AL BTF— 2B ahTERI LSS, 1H:
BrFNFIEILTAT Iy Pt ) OB EFERILERTTITbRAZEFBToN LS {eg, Mi
yazaki et al,, 2004b). GEONET @D 1 Hz #—# 2V FAY A AR B EIC I VHIROMIME- A~ MG
UThs A ATHETDIEMNYREICE S, CoFATHERIUERBBIGERTS 2 L2 Y BEEROoEE{LAIT
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HTELMAD (Ohtaet al, 2012). SO LI GPS OWEEY » 70 ¥ 7IHARFORBREDVE - THL
HEAOBBEF LTI B R0

GPS OfHH~OEAFA L LTid, GPS ARFIFEFRHFERFERO T2 2 FELTERBS L, ARE
OFFORBILLFES LT EIEREINDIESL D). GPS ARFE~ORFIL GEONET ¥ — 7 L0 £EOT
[k EHEEOHREY Ty 4 AMEBEZERTF—F LRI F—2ELL. EKRTFHOMEMLIIBEITLIILHFELSH
{Thatkd, ZOFOT 2y FOPTAEHRE LEMET L 1 Bl EI TR REEL~ ORI F5
T3I kot (hEL 2009), T, BEBHEOTHTL Saito et al (1998) AT GEONET ¥— ¥ &ML
THAFB LZOBRBOES ALy EX VT2 L XML EHEFRLTEY, COBGPSOTLA %
FIF LA BB R R BN BT Db T I b e o,

HAENAEENTRKEOF— s 2HEICERAI L) S bdb, BEHNEOLFERMBLZOMHAIEA
HIENIRLOBERIFRETRICLAEDVADESL S, FO—HT, GEONET TH/{—TELwEizdik
AL THNEED. GEONET IZTE LT 20 km BEOLEBRE 2. M8 7 7 AOMBTHNIZ O XS Ll
TR ERRTBRNREBLIEDNTEINMT 7 7 A L AL LO T W 2B 5 IL3TRETA. ¢
ZT. GEONET 0l @+ BET 5 L3 2 8 6 R#EEL 7 LM LA MFERSRE, B HER T ICE
FERTWARKERLEZBNARIOEIZATH S (e, WHFEl, 2006 Ohta et ol, 2008; 1548, 2008). =
NOEREEINEATH LY, Fr =AML 005D, FECEL, FRAAICEH S GPS Bl
MBEOFTHL, 6, BERTRKESHBEMNBELLBICOBENBESCORDEMRE % [GPS A&He]
ELTERELL BIERNPYTHoDiE 1995 EEFRFHEE Mws.9) IZESBRITHAS. Zohiid
CGPSHFASH TR, HLDTRELAKARBETIHY, £ OXZEREFIFREIZSMLL. BB
FEMNOBES LRI THREILENLAEES (CORBEF By RN, —HEEFTCORAIL>WTELD
EHIAEHALLbVEL. TROOBBTEDS ( SMER, AIAFEBICALROERCHRGL O, Bkl
HEEHPLBEDREL YOV AT ¢ v o A, FHL VEEERI R CORR-HNPHETENT DL T,
WERELR PEIHO GPS BADAR L oM, AEFENZ Ly ToORNEMOESLHEI RISl oTnS
KEAy vy T oEREEEBITONL S, I THLERIFOEI & CREBICE) REBEISBrTRWIZE
Lo bHicBbh s, REEAHHZEI-MFD GPSBRIEH 1 F£453, BToBENBIOM0, EiEBiEe T
L A — S BHIMRAE LW, BONLSHERORRIBITYTbN, WETXH ERBNRNTERTI L Yo
& biTbii: (Kato et al, 1996; Mg, 1997). ZOBBE & o5tk LT, F0O#H 2000 EOHFHRALMK B
ik, 2002), FIEZEBRA LR BREN (Kimata e al, 2000; IWHH, 2005), FECBBRIBFAMHE (IF
F M, 2001: Tabei et al., 2001), 2008 {E-+EipiE (GPS K4HE - SEE, 2004), 2004 EFBILFRBE (B
Ak, 20085), 2005 FAERELE HidmE (XS, 2005; Nakao et al., 2008), 2007 FEEEFRMWHE (844,
2007). 2007 EFBEREN BT CROE, 2007; KA 2007) 2L T [GPSASME] oMz HVLHS
WiHEBORZEIL L 2 ARORPEATFEEL TV A, E (2004) BUNIITTHE (2004) 13, 2000 4 SR
BoBATHShARHEHE. MREROSELMBAEAEEND E B I THRAOLEI L 28N0ARIZLS
bDTHLETLIEAHTHULL Y & THERBEWHAEZIT> T,

—F, TGPS KBEHEE] Ll s TERShA2ERRNEES b & LT, BAEEICSTS GPSHEULEREN
Ariltirot HAEBTZBEANORAN NI 1080 £ifThiiA Y FALTREBHAMATHS S, 20l
#ll4x UCSD @ Yehuda Bock i £ 2 BIHEHHIC L o CHRP L E L O REFSML CIThA b0 THS (Bock
et al., 1990; Prawirodirdjo et al, 2000). —J, HAMBEFHEG.LLT2 7N~ FTik [HBIR] 7oV oy
BMT3I ik, BHREE»L 7T UTIIATToMRTEEEGERAO R v F T -2 ERKL A (Kato
et al., 1998; INig - GPS KEM S, 1999). CheIi2TnWT, 240X, 47 FRL T, v THETEEOK
EMEEFRBLTTF 7 b2y 2 BEER 2 RETHIROFTENES (FTbhlz. /4, GPSEAREILREE
LTEXA—YHEZLIBET LTS 2 FELTHF I CRBERABEI L - Tt OERBEREHMT L
BadThh (L), 2002; Iwakuni et al,, 2004), ZHFIHWE L TATELNRO 7V — 7 OHERBIEE L
THEKE»CHET VTICBiT 514 2 TO GPS BRIMBH 2R L Lk ot
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4. FPRZm R BREOTRER

20114E 3 A 11 Hic & LARERARFEEDHEE (Mwo.l) B GPS vl #HLVwBRY b 6T
WHEREZ#EOTVLA LI EDLRE, ZORBICL> THANBEEICKE L MBEDHTFLE LS (H 2 Ozawa et
al, 2011). HEREBH/ZT TR, KAELSPDEBHISTIHRNTEY, SHEAVERIIbL o THEL LT
PABFT A5, TOLILEDEDISHER LoD - By FADREIMHENT M Sh BT
abtEATmy. 7, GPS AR SN-ERBOBTFRYOB L LIZANEXAohC L HEShTY
% (Hekiefal,2011). ZOHBIIAMBISEYARLVWERE A6 LA, BHEAEHEOMRERSE D
ALELTWwAHELELLS.

ZOEMIL, EHEFRICBWTHRDETAD— 4 < OB BT T 5 H HHB T O X )RS
BREHAIREL T ARG 2, HHWLHETIHz Y ¥ 7 Y X R SGIIBEEY - 7Y 212k 57—
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IRGOFIFIZEBTAEWIETES. Fgure 4220 X5 GPS 74 7 L 4 Bl AFE~DERT —F
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Figure 4: Proposed GPS array surrounding Japanese islands and in the western Pacific. (open circles)
operational buays established by the Port and Airport Research Institute as a part of the Nationwide Ocean
Wave information network for Ports and Harbours (NOWPHAS) system, (closed circles) proposed GPS buoys
along the Japanese coasts and in the western Pacific, for the purpase of ccean bottom crustal deformation
obgervations, and for the oceanic, atmospheric and ionospheric researches. All GPS buoys are also intended to
monitor tsunamis that attack the area. Onshore dots are GEONET sites.
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Abstract The experiments were performed with the aim of to reducing the human damage by tsunami early detecting,
transmit a tsunami information via satellite from the buoy which was installed in offshore. In experiment, transmit the
correction information to the GPS tsunami meter which was placed on the buoy, using quasi-zenith satellite
"MICHIBIKI", and carried out the precise positioning, and transmit the positioning results to the base station using
Engineering Test Satellite V111 "KIKU No.8", and detect the tsunami. By performing a data transmission by using
satellite, it can collect information of tsunami from the offshore, and early detection of the tsunami is possible.

Keywords GPStsunami meter, Satellite data communication, Early detection of TSUNAMI

Loz ko THEELZDRLITED. ZOHRFDOHEEL K
HWE K EE, 2 OBEKO TR L EHR O Y 2R E VAT LOMEIZ TR OEA T T M,

Thisarticleis atechnical report without peer review, and its polished and/or extended version may be published el sewhere.
-461- Copyright ©20@ @ by IEICE



[WoTh, ZRThH, E2nbTYH) EET—#
W7 VB ATEDVATALTDHZETHD. £,
HROKELICEZHEEL Ty U =27 TR,
R KEERBICEBRT 22 L b HREFITAND L
ERHDL. ZOHERT, rLORAICESIWEmE
A EE OB EZITo CE 7. BT, BR»
DA AT D R JE I SORE PR oo Wi T AL A # em D
FETRY 7 MESFHH T, RECHREHRNE
S tERAEL, AW FTE L LT, GPS (Global
Positioning System) % i\ 7z, GPS B & « A it -
WAL EE (LIBE, GPSEMF LML T 2) L4 FHIT T
B AR L TE/-[1]. ZhETICERELTE R
GPS # ¥ FHix, WIAIE L T — & @5 HIEIC L 5 HlR
Nh, WA 20km EFTERERME LTE[2]. 2
ORI T TCHLHRAARAKRER T, [ETOENE TH
EOEFIZ-EOEM[INHREZN, &S5 MA
~OREMERERICHLBUNRNVEGE AT LD
SENRRT REEWBEE L TR TN, 2
NOEMRPET DD, BEEXEREREL T8
BEHMPMEOERE, HEBGICLIEEOS
JRVHE~DO T — BRI LD EREFEDO 200
MEELrERTAILERDD. KARETIE, MEEH
’*Téﬁ%ﬂ@@ﬁw(wSE&%VX?A%%
BT OAMET —ZGEEV AT AITOWTRT.

2. GPSEEFHITDOWT

GPS EEFH O KA, MHOLBICR BT
DG BELT®RIK (7 4) ONLE % GPS
WL > TH cm OREE TR L, $HiEJ7 MmN DR
RINT— 2 2 BEHEFNET LI EILHD. HEHED
F =A%, WMURBET 4V X I T, WK, B
B, WMyicHNTD.

2.1. GPS BT DH 3

1997 4F 1 H AR & IR A ARVE C E Jle U 7z H il R B
2 GPS HEWEFIOHA R TH D, Fl T, 1998 4 3
AR CTEARMAEER 21TV, HIR LMW % Rk
W em A— X —CHHlcE s xR L. EAL
FEER L LT 20014E 1 H 23 B2 54 F I M 3 b
CGPSH A RRE L C3FEMOMER & EhE L
7141[5]. & BT, Z oAl o G BB B B 5 A ot
W, B CHEITEREIT .

RS PET IICRE L 7= GPS Mtk i, 2001 4 6
sta , Z DRI A KDL —THA L Tz H

CEDEWEEMO T A, HVT, 20034 9 A

%a@+%#ﬂ WA AT, 05 oERE
PN X - T, GPS @i 51, 10cm 2 o i T &
BATRETH D Z L DR TE 2.

GPSE W F CRHAI L =M A & T — X 1%, B HAL

-462-

TEAT2WBE T 4 LZ ) 7 LT BT
NTED., 2, BHODLHEMOBH TELT S
R OEEERBEICHE TN TEDL. IR
X, GPS WA IR O MW IS E DI O A B
iz b oMHmOLElLE —>OHBTHEERL#E
BTErZL2EWL, BRBEMEL LHAEL W
LCTWa. B3 L7z GPS Hy & i B #1072 3 1R 81
LB EFICHEEZ 5 HEEDH 5 HEEOBHIC

bIHADILENTEDHILBRERSAL. ThbD
PRIE R 1T, GPSHIREF & LT, [E Ll H s R

NEATDHICE-T[6]. RSN AT 2%, B
WEEBCWBE sk O TIC AR R 2 BIRT — &
OB AE EIZLTWaED, BT — % 2K[R)T
kD Z LIk o THEBEEDHEFRFICHEES
TWd. 2O GPSERGD S5, HALH G KF¥H I+
WKWRBEINLTWIEEEOT =40, [ETOEE T
WME OB & RIFICEB LZRR L o 72[3].

2.2. 74 LD GPS BN %

BAFE M PIC A L 72 JIA B, 2 cm O E % fe
R4 2 7=, RTK % (Real Time Kinematic) % F:AS
B7elifiiEE LTRALE. 20540 E I, A

DEEEREZF v LT H-00EEREERLE D
B 5= R AE A% 20km R L £ TICHIBR S h D5 Z & Th 5.

PVD ¥ (Point precise Variance Detection method)
(71, BEEZROLZO TR, BHNEIT O EIZ
AEIOFHRAIIE & DE{LBEZEBERD DL FIETHD.
THICIE, BEE L EEE O GPS i & & o [ o B
CHMADOTF =2 &, ZOHICEEN D EEE
By, AR EERE T 4V E TRET SO
HEEROT — N AREL 5. BIE, EAEP HER
SNTWVWDLIOE, A 0MEELTORRENTH
5. 20R2FIZE B LT T A DL OT — Z 515 EBR[8]
TlX, ZOPVDIETROIZBERT — X B8k L.

PPP-AR % (Precise Point Positioning with Ambiguity
Resolution) [9]iX, GPS f# 2 O FEHEE (KFit & &
EHEAL A AN A T A) BdiE, 74 Lo GPS #H
TR RETTCTADOEEMEF AT LR EKD
FEEBEMBMIETH D, MEBO S b K & NLE I
5 T 22 BT 22 BR JE M A (JAXA) 28 B % L 72 MADOCA

(Multi-GNSS Advanced Demonstration tool for Orbit
and Clock Analysis) & % #£12 L, E L # B 0 % 1 3
ERT—2%RMAL, MIMMEHEALT A ERD TN
5. 20134 12 A K 2014 4F 6 H O T — X (R iEEH
T, AWM EE ARG LT — X 2 EBE L.

3HEERWETANLDTF —ZIEE
TADDL DT — X EXICH VT ETS- VI i, %
LTWADKRBREET T FHICLD, SHDOEZEN



BEARELSMELTWS., Z0n, KERTHL
-5 e/ NRIHER R & o @BEICHE L TWaH. LL,
ZREMWOBMESTHERORLLS[0]” KRS, £
BCIEEOZET T Imo XTI RT T T
FTEHWTEY, REEBRAT T E&EEL, B
15dB R ESZEMHERIMME T L TWD.
EBRIZHWTE 7 A1, EE 8m 0BT, RE%H
FriZ s F IR O &K 35km oA TH L. M2 DE
M7 A O BlLERT. AKOHMIZAETH .

X 1

3. TARE R ITHIHEEBFE VAT L

EBRICHWEZ/NRHERF O TEFE CER LICRT.

ZO/NRIHERFIE, R Ry NU — 7 BR8]
HWEbo T, BV TRR ey EDT —
FIREFERE MR EREEORFET — X 2 G L C
W5, RL1ITRTEIICNEMERBNSE DXEFERES
DEEFHEIIIEFICKETHS. ZniE, BHEOK
HMERT TR ERATE R kol LNHEAT
D, 0D, BEERELEHEIZL, EET L —
LAEEZ2BELT, T—FOEBEZERL TV
X 1AM NRMERBONBETH . T T I,
HMEBROLEO W NEEmMET 7T 2 H W
X 2 0%, M EEERCEE Lo N ER R s &
R~DIEERETH D, BERFMEE, 70— 2570
3 (Frame Error Rate : FER) T LTk bV, XK
TEELET—XIZEY PRV RS2 HERL U
BETERholnBads 7L —bx5—L LTS,
R2F/NEHMEFD L EMFT~EFEERELE L&
ORBEHEH TH D, NHERRBORET V7 I
EANYBIAT T FEAW. BEMEE T, HEi
RTZETH2EEOREENHEETHEEL (C/No) 13/
30.5dBHz & 72 b, L P EBRTH LN/ R L I1ZITF—
BZELTWD., RVAT L2 EICIHERBELTCT — 415
EET-oTESHA, FER IIH 1X102 8\ 60n, v
THEROBEICFREREBEALTNSLLEEZS.
32. FHEFAVWET X (FERER) &E
20124 10 H 24 H~11 A 15 A 1WA DT — X
EEEREER L. K3 ICERBRNZ RS, &
MR X NICT BES Tl o 2 — (RREIR )

-463-

WWRELE., Zhix, XEBROEBWMO—>TH D,

UV EREER L TR VWHIIRICT — X Rk L,
HWMORBEEZMFENIITAD L EELETDHEDT
5D, TAIZIL GPS EHHFHE 2HFELTEY, 1
BIXETSVII 2HAWCT — ¥ 5 B%ET 5. 77+
ANV IAT T FERVWE. b9 163 Eo K
WMEBRERANCT —F 2 EELE.

F1 NAHER R O E T
{7 A S 260GHz #5010 2.5GHz
mEmn | osw
T BPSK+SS [(2keps)
B | 2500ps
T #1 30bps
| EfEHX TOMAQ £ F+ T T)
MOITER M2 2T 5
(T B R=1/2, H1EE=9)
e
FEF L— LR 28

i) DC 12V (R AR )
e PEERE 89 0.6A SR - #5024
HE A 160240 100 {mm)
H it B 15k [T wrFHams)
| e P
F - 38 c 6.0dBi FF - 6.5dBi
FRIAIHE « AOF PR
Wi - EREMEE (EE
sy 2. .,_h;?,_ ﬁ-f e b
FI4 - R1E - 7.8dBi (# 4dBD)
(G T.2dBi (3 4dBi)
(AP LA B e DR
e ACEdm P SRR E
Wik EEEM AR (EEE
1.E4+00
1.E-01
g
1.E-02
1.E03 +
27 28 29 30 31 32 33
C/No (dBHz)
2 /NBUHLER R o B FEHL R o~ D 5 35 R



# 2 BEIRREHEH
Satellite: ETS-VII] |hAishekfB-—dhuhf
I REAER R ETS-NIIl -
—  ET5-¥111 R
Uplink Down Lin«

Fraguency (GHz) 2 65 2 50
Transmisson power (dBW) -0 87 =20 95
feed loss (dB) 2.20 160
TX Antenna Gaim (dBi) .90 43 80
ELRP (dBW) 373 21 05
pointing loss (dB) 3.00 300
Propagation less (dE) 192. 38 19238
Polization loss (dB) 1.00 000
Rain Margin {dé) 0,30 0 30
Fading loss (d&) 0.00 000
R¥ Antenna Gain (dBi) 24 80 3 54
pointing loss (dB) 000 1.00
feed loss (dB) 280 0 &0
R Power (LMA in} (dBN) =170. 95 141 E8
System noise temp. (K 510,70 361.83
System G/T (dBK) -6 08 B 10
C/Mo (dBHz) in 57 &1 07
Pway C/No (dBHz 30 56

R ERR R O B, ZhFh okt c%iE
LT =234 v —%y NaBEzHNWTT — &%
—RNIEET L. TADOEEROFMERET D
W, EHAFH R OCBER TN T A ICREINTE
D, ZThbLDOF—Z |3l FERER CEESND.
M4 3BERBBRTT —Z 2Bk LR 1R &
O FER OHFM AL TH 5. 5% 4 ® FER % X
BLIEHDOEOES S (AREES) ORFHEZERTHS.
S5O 11 ABSHOT —# T, 128 50
LEMPFEL 2o TWLERFBRENTED, K4T
H FER 3H L TV RRENTWD . £,
ME5EMOILA MAHOT —F TIXEOBH I NKH
FE2mU ET, 2o &0 FERIIK 4 5 H 2
X100t L EEELS RoTEY, WEOEREHWE X
X, FER2Z3H T 2MmAm BN TWVD.

B 61T AL B KRGO T
— A ERICHALETA DS REEHEOMA T HO

»:";g”‘ ETS-VII
e ‘\

™
.
\\
iy
HEES ~

3 ZEBRAE AKX

-464-

1E+00
1E-01 ——
1E-02 i
=+-2012.10.25 R0 6m
[ |-=-2012,10.28 B #Im
~S-2012.11. 5 EEOT-1.Tm
| zmzanad EE#LAm || T
1E-03 |
10:00 11:00 12:00 1300 14.00 15:00 16:00 1700
Time (JST)
B 4 JEHR S FER @ Rl £ 1k
30
=-2012.10.25
-#-2012.10.29 p
25 -8-2012.11.5
-4-2012.11.14
20
E
§ 15
i
i
39 ——— o 2
05
0.0
10:00 1100 1200 1300 1400 1500 1600 17.00
Time (JST)
M5 A& D RHE

BEEO—FITHD. 7 —FI1X11 H 14 H (X 4,
5 08MEFLA) KREBELELOTHD. HWE
MoOE;L, 7AOB;BICLIBEELEEZLDLN, 2
NICEWEAMOEHNEEL TWD. B0
BRI TADBRICE > TIEDZR, ZHRITHED
A, REGBFTOMEL N T A OFREHFEREICX

HENMbLEEZ LS. FERDHSILOFIA L,

SAT EL. (deg)
g a2
—

a7 2012.11.14

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

6 T A 0D RIAE OIS TT R O R E AL



X7 MR sk

kI N IRIEH O —H

W GICRT T A NS RIERET O /AEESD L
BEET VT I AN = LD DT, 11 H 14 HIZ
B LEAEOEFET T FRE =0 OF — &)
LR Mo %EMSE N R E ( Equivalent
Isotropically Radiated Power : EIRP) ®ZE & i = C
Ty T EEE LSS O EIRPIZK L TH =2.5dB
RELZRD. X4 TIEIFERAHMOREBEL & bICE
K rAEmPARLEND. T, ETS-VII IZHLIE H
a2 —#IT-> T nizw, FHENMA G mIcE <
TENRRETH D, EBREH O 10 R~ 17 FF I3 fH 2
MANRLIELS R, ToTTORBERD E— A
FHMLiES3&, HEF MO EIRPHRRELL D,

TIEHAER CEMBPIRE L RERD
THDH. (2012 4 10 A 30 H 13:30~14:30, it =
Ar— b Imldiv.)

3 WMEEZAVWET —Z (BEEH) %
20144 1A 3H~5HKUV'6A 1H~21LHIZ, 2
BHEQRIMEHOT — X {nEEREEm L. 1FH
HOEBRCIHEREHRZMEBELEDYN, ZoFHR»L
R AT 52 Sk vw. KERTIE, 74
ECHERN (PPP-AR k) Z1T\, EE OB 2
AReR T —H ERS L, FLE ETS VI 2 AW TR
Bl ERERNEZX 8IZRT.

TA L CHEBRNZAIT) O OMMmIER (FBEE)
X TABWUE ] © LEX (L-band Experiment) {55 %
%wf74«m k3 5. ETSVII # Wi T —Z =

By i AR I

K%ﬁf@%%%@kﬁﬁﬂ%ﬁb,f%@%%%
TUT ISR T T E AW, KoL TA
W E L EE O, K 10 /N SEm T > 7 o
BEENE—ERT. NV AINT T ek LT
TUoTFNRNE =N Ta—RThdd, 7A40H
RBICLHIBHEFMOREBELEH R/ 2D LA
FECED. LIBHOEREFASEOEBTLN T AL
L7=a, MEFIMOEE EIRPOEH XM 3dB &
HETE%.

INISEE T TR AW ERBR T, 7T
FEREICHT CHRBELZEE, B TZELE
5% @ CINo 1Z#) 31.2dBHz " 5 v 7=

1EHDEBRER UL TH DR,

-465-

;:mmlms;m ETS-W(#<88)
ok me‘%axfsmﬂ*
LEX{R® !M"ﬂ /
= "‘ REEEA o uu%
THGER YEN
TRE M
AR N 1CET A 80
_ME#R $3I5Km For =
H—iiem
L.l N 1]
HRE, BR,
HET—HER
X 8 FEERAEKX
LEXZ{EH# hene

A L i—5

GPSTTF
GPSILE

INEBT TS

#XwF) 300Ah
PR 135W x 4

B9 A ok E AR X

Antenna Gain (dBic)

-80-80-70-60-50~-40-30-20-10 0 10 20 30 40 50 60 70 80 S0
angle (deg)

X 10 /NS mRT T FEE AL —
X 111X 6 H 18 H~19 H C, 32 KDL La#ER L C7
AP T — A IEEErEBLEHERETHS. 20 & &,

K& JAXA S FEH L v 2 — (KRB - < I1Th)
O2PPFHCEMBEHE L, BT Bx T
BeLloT — X &2%E Lic, ZHEFHEKEL TWinil
WICT— 22 EET52LCMaT, R0
bz Y | EFRE~ORIS T O ZRITT D720
ThDH. KMo LT FER, TFTEREORSORKMZE
fbThd. EMBTZEEINDIEEDOFER E 7 A %
HRELTCVWIELELOROESICE, 1 BIEOERE
FRRICAERZMEEARLOND. EOSIIEEA &b
Z< O T 2m 282 TH Y, FER I 3x101
FREFE TEL > TWVAH. X 12 1T A LR CTHEHMFTIC
EREENEZ6H 18 DT — 4 % HITHIR K OCHIW O
BlbEA L Li-b o TH D, EBIIMEINE S A
FHREH T, SROBEXFEOESEZRT. FEIX



LE+0O

B
£ LE0

| -F}Diﬂ 6 1B ""1014 6.19

LE02

000 200 400 600 800 1000 1200 14:00 16:00 18:00 20:00 22:00 000

Time [IST)

L ! M
\‘——-.— —05‘__'/' VA\ ," “.\_

g
.
.

W (m)

000 200 400 600 &00 1000 1200 1400

Time (15T}

16:00 1800 2000 2200 000

B : FER TE AEES
X 11 T — X xik EBRE RO — B

REOESE oim

-
un] ., III x uﬂu S .
. ey

Iu mLT &%ﬂﬁkttém(mmom&

H@@@w&ﬁ%HR74W&T%£Lt%@©
WM OEARNFEOND. HENEELLY
WZHNn5. 6 A 18 H® FER| ﬁzxm1EF&E%\
N, BEOHRHNB AR THDHZ & 2R L.
FERIM AL, K 12 2R A b LA A v
=Xy b ETUTNE A LIZAB L.

- -
— —

4. 5H%RDESE

RFFENRT L O, BEICHE Sz GPS HHK
HOTF— A REFICEHFEBEBENAARTHY, &k
O ER EOHMORREICE Y M2 & T,
B O R ER AT AOMEER L2 TEER
HEMN TED L MEIND. VAT 2OHEERN LD
BEETHIN, FiltehkEHOT -2 BEHE %
ERMRA 7 THEEE L TEIET S EBMET
HD. ZOEIBRT X BENEBRTIE, BET
—Z T TR ORFEBNT -2 2 ) T LEA

-466-

LATHENSEMRT L ENTE, FEH - WHE - WHE
DOEWHFRICHEGT T D1F0, SESERBERRED
OB HRERE L TEESHICLEDRER
BEND EHFTED.

5 8bvic

GPSHWH DOME LM LT A D DTF — ZnikHE
BRIZOWTHE Lz, FEBRTIL GPS # k51, /U
KREEROEERAET T FEH WY AT AT, i
LICHELETADPOEEORMICHED T — 2N

BXTEALAZLZEIHLE. KN 72 ER L
TAHRMBIZE BMEOHEREIERKRTHD, &
WoRBBEHITRAORBETH D.
X Wk
H]W%%z FHEH, KFEA, fiAzEq, —
@, GPS HEEt o B3, HFEE, 54
15(1998), pp.38-42

[2] Toshihiko Nagai, Shigeru Satomi, Yukihiro Terada,
Teruyuki Kato, Kyoshi Nukada and Masanobu
Kudaka; GPS Buoy and Seabed Installed Wave
Gauge Application to  Offshore  Tsunami
Observation, Proc. 15th (2005) Int. Offshore and

Polar Eng. Conf., ISOPE, Vol.3, pp. 292-299
Bl 20X, FoeH T, 20114 4 A 248 (H)
m%%Z,%Eﬁﬁ,ﬁTEé fli A 5 =],

(3]
(4]

@%,ﬁmﬁk B e, MR G%
A EE O BR %S - ﬁ%ﬁm@%% ==Y
%T%a*e&@%%x Wi B, Vol. 84-B, No.12,

pp.2227-2235

Teruyuki Kato, Yukihiro Terada, Masao Kinoshita,
Hideshi Kakimoto, Hiroshi Isshiki, Msakatsu
Matsuishi, Akira Yokoyama and Takayuki. Tanno;
Real-time observation of tsunami by RTK-GPS,
Earth Planets Space, 52(10), pp. 841-845, 2000

KAME, HARBER, xR, KEFEILRERE
@S&&ﬁﬁﬂﬁ#%ztkmﬁﬁmﬁﬁé
WG R, WS R EIRF ST s, 5 47 &,
% 2%, p.86, 2008

Hiroshi Ishiki, Astushi Tsuchiya, Teruyuki Kato,
Yukihiro Terada, Hideshi Kakimoto, Masao
Kinoshita, Masayuki Kanzaki and Takayuki Tanno;
Precise Variance Detection by a Single GPS
Receiver --- PVD (Point precise Variance
Detection) Method ---, #| #1542 36, Vol. 46, No.4,
pp.253-267, 2000

AR —, SFHEEE, SARIE, MERe, &
2Ry N —7 ——KEORYHK
Mz HEELTC——, & 57 MFHAZEMNEA
i 2, 3D09, 2013.

Leos Mervart, Zdenek Lukes, Christian Rocken,
Tetsuya Iwabuchi; Precise Point Positioning with
Ambiguity Resolution in Real-Time, Proceedings
of the 21st International Technical Meeting of the
Satellite Division of The Institute of Navigation
(ION GNSS 2008), September, pp. 397-405, 2008.

(5]

(6]

(7]

(8]

(9]

umm¢EA,ﬁ$ﬁﬁ,$E§~,%ﬁﬁﬁ K
Lmﬁfmwm ZEMETORES,” # 51
E?ﬁﬂ?&m mﬁﬁ , 1J13, 2007.



[S& & ¥2014-2]

-AZELaa B3 (HEIERRFE), Vol. 70, No. 1, 1318, 2014,

GPSEFJ M REBRORHMAFEICET S
KIHE

SPE SETD - koF D2 - DI FRZ3 - A R —4 - JID TS - AT FROAS

UESB BaTERASHMEEss (T783-8508 B RpiE s Z.200-1)

E-mail: terada@ce.kochi-ct.ac jp
I7xn— (Hyx:a—BRFE (T110-0044 BURHERE L L8F2-6-4)
E-mail: t-nagai@ecoh.co.jp
2R REECKREIE BEUITET (T13-0032 RAMXRERAE]-1-1)
E-mail: teru@eri.u-tokyo.ac.jp
MESE BHERFERE KERFEREER (T980-8579 & A HFER ST H 1E6-6-4)
E-mail: koshimur(@irides.tohoku.ac.jp
SESR (k)BT AT (T 239-0826 M) VAT HEHE-1-1)
E-mail: kawaguchi@pari go.jp

SR BIEmRER) B A 7 SR (T559-8559 KIRMTEZ TR #EL1-7-89)
E-mail: matsushita_ya{@hitachizosen.co.jp

EFIPEE 13 kK FE128 mHEIZERE L, METH ARzl TR - B% - Wl oBlEft L%
EFERBA FIGPSIRE T A4 Ionf+ 2N SR F R L. ~ 074 OEERELSRERROBAEG L2 BET
5. ERIERERABPICERIGSHITHEI TRBEML mOBRLLORBEZTELOD, TAEMNTE
DERER L ERF 2 —EOEEOEHO v » I NVOFKEERIL, 6 mm (1.67 mm/ ) THho71 .
THIIHIAELTWEIO /LY, 3NN EWHETHE-F. BEREXRLXEho-0T, B
EOrLBY, FUFIEFIEICELETE L ORF 2T ARERILBER VROV 2 THY, FTOBE
FERRBRTmm (195 mm 4E) Thotz, ZOBEELS A AAEORFBERERL YA ZIWETH .

Key Words : GPS buoy, wave observation, tsunami, mooring, chain, durability

1. 1IXLHIZ
IO TR E SN -, A
BRICEET AN R RN A T LS TE B
b, WRRRICT AEERsE E, FEREICERATHS
ZERINFCIHEIRTEELDI, UL, Hit,
AFHEEORBIR LR LED THRLZER CHI D,
HEOBEETES—Fy P LEBRIV AT 0%, B
BiRz e > TREFPIRBICHERF SR LT A 2 L i3E
BLIIRETHS. SEEEXDE, YTNEFA LHE
=& D 2 ERIIC T - TRESHNTZHE LTV <
oo, Aok o —id, EiReShhi o
AR BSPER LT A LickoT, BF, Ax
DEANGHRATERA LT TV A Z L BEE L 25%.
T, BREICISOTED RO iV EENTERA, )
THICIEAT DRI ST ) TAF A A THEIS

FERENAOE, HELRRBELWESDHEZZERV.
ZO LI REAMLTIE, OKEEE LIcREShS
KEEAY—1E, BEESEACIESTHA LoD, EFE
DEIRIAE S BSOSy WKIERT OB @b
e, iR S kv i Yo REORRIEBROREC
RN BH D, 5 LB L»T, 0UFEREL
e BT AT IR 4 9 RN DS el L 2 BRIz,
BELIZREEERIC L > T£ERFICBR STV
GPSERHM Ry P 7—2 N, VTP A ATES
e & BRSO ESIC HRS 5 Z e R TE
Lok Bbhs,

GPSHEFT A 1%, —H%IC, HiRGMHEERM L TIKE
HERICARE L i b 2nicd, RERVEELY
2. A3, GPSIEHET A REROBRHI S~ TOE
B ENs R 3 L2EMNE LTS, IO
Feiz, GPSHET 1 Z3METH Affichlc> TR - i



[oARZ 2 aa IERS GREER#E) , Vol. 70, No. 1, 13-18, 2014,

W T OB O L= lz, B AT ARk
Bl - LD T —F 2ET A L2 B L CEML
T= B ORI G, (RHROEFRB RN AR E
LizfERZ s 5.

HE 33° 15 5527
Je4#134° 2 155"
HKZFE 128m

2. GPSigi¥ 71 DRERDFHA

—ROHRFHEEMORERGHT, ZOMEMOMRE:
FAHCE R A7, BRICH D BER TR E
WAPNEEL o TWVAE, ZHICR LT, GPSHEES
A 1Y, HEE RICIE T A Z LB TES LS T
BHicw, FKEEGE T AMERDA L LB, T
x ARV RIGEM RO F FTESZELL 7412
—§ AL LATAIERSE R, ZDlw, GPSHEA:

j’l’ Tli‘ a“:r'—:/I‘:\:]: é_rﬂf{ﬁ%j}%“j— U m)jii?ﬁ‘ﬁ xl,:g.m; |3|’_m 13‘@ |;.:m |J.|‘m 19406
HETna, BFEICESE T, ZoFAICL 5% WiE (dex)

BF = — DR R B B R — 2 ANE B EphairsEy Ak
EAEB LW eh olzizd, GPSHRET A DEWE | ’ - '
OERMLRFGHETIVEFITE L Sh TR 6T, BRI
[T TORIREE L o TWA. ZRETOBTET A
GPSHEET A 1ZRBWTIE, TAEH FOFo—4Z20T
1,10 mmAtE, EHROFEENSZ T TR RD & ORERT
B0 SN ABRBFELD B2 HHC oW TS mm AR
Vo BEREAE L, MENREERORSTHI
TWED, =9 LIEAREDZYHEIC VT ORT®S
LbtaolisSaiehot

3. EPhEFERY A b

AT TR & UT-GPSHEET A (X, =PG5 ph
13 kmlZ@# i S TWe 7' A T Y, K128 mithslc
0084 H21 AlCRRE SO THS. B, —Zo
TA ORI R, ZOHERICBIT S BEEE L
T, JEGH60 mis, PR (FE) 26 ms, FEH149 m,
A E65 sEakataslh- & LT a.

REEATOMEESI LORREZBEREATRT . RIER
348 MmO F 2, HH265 KN (UKFPHE230kN) @
Fo7a—AWT o H—, EEAS mTHEEMIKN @K
i 477 kN)  OGPSHEET A iR R - Bt L= T
bD. TACBELLE L ROBEREBEATHY,
GPS7 ¥ 7k F83mlfinfii+ 5 = Lz 5.

D7 A OENESRE 201 FEILH2SAIZEM L, 3457
H A MOERBIBRR AR T 5 Z e TE . BE2
&, 74 B LB E TR DO THDS. DL

L TENL L7 OFERZOBEEL Y 7 BORE S et d
EATT, ERAYICEERERERA AR L. BR2 BHNESIET A ORR
14



4. FHFFRBRPOHBR

—ARIC, GPSHHYEZ A IZBHREM 2B L CHokiE
ISR S DAY, BshEa Tl bR
AR T A TR X RoE i, 201 14ED S G
FDHDTH-T=., HREHNESE L7274 19H ORf#EH
Mot & At E B2 Rmd. HsHE 60
ek 9z, AE|EEIIA mPRAMTHY, ZoOD
AHIEEMNZ12T sTH o=, SOERERIEZ b & ITHE
ENT=T A OEGHARMEAIT49 mTho 72728, %t
HEEID564 %DFRA MM Iz -7=Z Lzl b.

ZRIEINZT, 220 A ERERPICEI LTV
5. —okk, 20104:3H28H (IST) 1o 3elil L 72201045
U HEHRE Y, B-8I0a T X D e 320
em T30, FhoF—2 1%, iRk Y oaElnk
R ET A EDIZ LA sOFIRT 4 L F FEHA LT A.
fho>—oi%, 20114E3A11H (IST) (o 3felll U= st 5
AP HEEE Ch Y, B4oasT X 9 ICEiiE
140 em T~ 72100, = O8E1E, 120 sO BRI )

16

o HREAN
14 +
§12 ,
%10 A
% _’ﬂ
E 6
- ty
- HERE | |
1= P
15 16 17 18 19 20 21 22
2011§7H15B~7H21H (H)
B2 HEI06% R OBRAFE d ORI
v AT
|1 | |
02 C B
" BEEREERERREN ]
£ A l\d‘m
2w 1 R WY M
g i e il B T 1 ! N
.,0_2 B ..I_. ‘!-:-_ ._:. : — -
ol ] I | 1| I I
-03 NEEN
o 3 ] ] 12 15 18 21 24
201042H28812: 000 5D BEE  (hr)
E3 201005 Y MBI

DAL IERS (HETEBH4E) | Vol. 70, No. 1, 13-18, 2014,

R TSR T 4 H L LTHVWTWLA. it i@
HHRHOBBEORETSAE R K S TRl A FvT
Rk # bR LT A,

AFEOBR M ONERIE, Z o0& 5 Rl
hatz.

5 REROMM

A8 mDIEHF = — O A TR LY
DTHD. ZIZT, VI NollZT A LOBHEETHY

U 2 ZNoSHIMFIET o W —IC B § 5 L O Th 5. 1#
BF -0 ) IR, RRBOMEIZL> TR
TWa. U ZNollxsv w20 ThY, 74 OFRER
LFREF o — RGO EERBS Th 5. BB

-5/,

210 mm/ 4ETH D EME LU TREF LR, Vo2
Nol® v v Z )L@BERITIE39 mmT, B REidln

mm T,

No.10A>5No20000191 Y 2 7 DFEET0 mm, No203765
No235033 Y 2 OFAES2 mm, No2367:5HNo39%6 (2
HEEAB F96 m) @Y 22 OFE68 mmD—EfHE L
=, THOF x=—i0F, BEFCHEE LRIz X
HT A O L FEIRHI DHEEICEET A Z e EE L
BILAHTZW, BHRERD/ T A EHERFT H P Tl
IR R T o — VY, T PRER RO
{kZidhot=.

HHECTHE & OB e AR AT 5 L B X O AR
SEH EAY D E0ONo 4007 H5N0.562  (ESJHEH /B O & X
1698 m) OfFTIE, Ve 2o0RETemmb L, 5mm/ 4
DEEFEZ FUAALTY, MERGIIGREZ MR TES LD
L=

WEESH R O H g a5 T Ll TR o & 7p ) w0
AECE L0, F=—lroFE B0 2R T A8

0.5

0.4

0.3
0.2

0.1

01 2 £l ‘ I

BEEN (m)

0.2 + |
03

0.4

0.5

o 6 12 18 24 30 36 a2 48

20114E3 8 11 A12:000 5 DFZBEM  (hr)

B4 201 14E SRt R T ORI S



ARG BI (HFEBRAE) , Vol. 70, No. 1, 13-18, 2014,

Mol: @81 ASer | No.1
Nod ¢ 78 AS 1 {1 i
NoSiOT0E < Not:d 70 SW 53]
NS E -Q Nos. 07045 )
09: NojG:d70 AS: Prh—Srudil

3 Nold 5. ssame vy o
| Nol0~200:191 LNK  E: 853K1) %

No200:670C £ ineont: 70 E C: il Y
Ne202. 868 ASH — N30 o ¢
& No.209
No203 23533 LINK
s No.239
e -‘;‘; ' No23EGEBC
§ | No.815
1 ~386: NK
i gaac | No236~386:161 LIN < g
Nod97: 068 E oy 2 Z =
No398: 68 AS \\ | l wag] T WY - Wy -
No399: 76 E _\X.)}_ 232 9 2:! T = | % g
Nof0476G Y | 685 Zes &8e 83
Ned0z T3 @ B%E S8 TIo ;%
8 000 v OO0 o~ B0 5 ot
§No564 | =%~ w ==z © 2= | - =
No400~561 2 || ]| 2 [] ] 2 1§
162 LINK “? ","e"ﬂ"F‘“.i-! . --ﬂ!ﬁ}iéf:; -----*rg-:::n- ——Eit o
R e e R i 050 og
No.419, 421,423, e Sq:j = -
425427429431, eae | -9.'5;'@ .5','&5 Bg
4315 z22 | g8 o= &2
222 252 232 22
) e - L ]
| No.567| No.660 ['No.964!

Es FRET =— ok

BTodY, Nos66eHbENo6SSE DD Y o OEEIT132
mm® JEfEE L, No662 & No962 & D dONoSLI A&
No813D 27 Z {5 LISD 1) > 7 OFE11] mmD—iE
& Lz, ZoMEEp T, 2224573 mm/ EOEE
FEa RaA LT D

=

6. ENRL-FEBFz—20KkiR

BE-313, 10 mm EOREFER R EofiliEm s LT
Lz U 2 7 Nol S REBEI ORI Ch D, OB

bha L5I1z, l“.nﬁ“ﬁ"?ﬁ{i‘q{ﬂ“ {REHBE L v w7 JVIZELY ) FREEHT M vwin
DUWVTNHIRIN A BLDH Z LR TEH, KEEBITR
Eﬁ‘i-f Bz,

F7-, BEAL, BIEOREF o —r2EEERE
IR LTIRIEETH B, Fx—1omlRE, GPSHEET
A FOF =— i bIEFC B L— O ORI
CH IR LB &P 2 ECIT o=, 1 T30 migieE

Tlk, HEEEYIOMNERE T, T b2 ik - iy EVwZ V) CUrZ
ORI WRES CIE, ERO LI RBEOEEDF Bl6 U EozHE

w2 NEH BICRe RS, RRIERNL B BN W R EE

6128 miT 20 miEEEDMFIE, WL oiftizy iz, BRIC L SEMREROBEICBNT, MESL
S>TEPNESRIGROTF =— Mo TE. Th  Zad Lok ond, RERITEEHEFE-T
LMoL, BEOFEOF o—UBEERRE  WAREAER TR



B LicF =—i4%, BSICRLEBREOKY 2 0
LT, ThENOKT LIZE6IR"T Y o2 343K
BT ¢ 254 & 2 FHWTHBIL 7=

£, ARSIV, FEIEFTOETIZEWT
FEREDNZ & A ERRB Lotz U Nol Dy v
0L, BG(NTRY AR a ROVEER ¢ A L 7o,
FHENC mmE S mnDERER Th o7, HEdhiz DIk
A L 167 mm A AEE 140 mmAETHh B, 2 OSSR
i, U I Nol RUSHIZRD U v 7 1220 C DS
FhlEE A R-1ITRT. GPSHER:ET A R AN 250G
HNEER L Tuvv s, Hilidsd ©7 7 AMDLERH
HIEEMERLTWA., Zojy, BRIz hL vk
EWATHEMER S 5. JIEMO B AR E VGO I TEEEER: 0
EFRFRLTWD., RADFEMDG, 74 FllFiznNT
HHl -, BEHEERERKE L FE-> T D
ZEMHHBMNE 0T,

iz, U7 Nod207» BNoA3 DM kN 2 BE-5(Z
T, ZOL D IINoA21 BENoA39IDI9 U 7 DT,
16 DY > 7 IZOWTAY v FOB#EN RGN, U
VIDAR Y FIEFe—rOF L BIERTHY, Rl

F1 FERBEUC Y v 2 LOBEERIIEER

B mm

B FUE | EHAEGL] a b c d
SEH®E | 190 190] 145 -

e _ Bt | 191[ 191| 144] -
EE S 0 0 1] -
FREEFER 0 0 0.28] -

| s&EtiE | 139] 113] 170] 113

aHBIfE | 133] 116/ 165 113

1 |®81AS [ = 5 5 5
SFEEFEN | 1.67 0l 1.40 0

| SgEH@E | 118 118] 176] 118

FHAME | 117 121] 173] 118

564 | D 84AS FEiER : . % 5
HFEEEER | 0.28 0 0.84| 0.56

E%EHM | 155 155, 233| 155

SHAlE | 155 155 230] 156

660 |D111AS i 5 - 5 o
FEREFE N 0 0| 0.84 0

s&EH®E | 136 136] 204| 136

EtANE | 133 133]| 201| 135

964 |DITAS it 3 2 3 -
FFEfET | 0.84] 0.84) 0.84] 0.28

FHS5 Y7 Nod20Hh BENodB3onkis

-471-

LA B3 GEEREFE), Vol. 70, No. 1, 13-18, 2014,

2T HREETIRY M T A, EREIT Y > 2 5
THEFRLTEY, WENLOLEL LRV EcRITS A S
v FIREIARERERN Ch 7=

T, FRET = ONERER Y 7 OEEREOTI
ERE2RART. T—¥ ORDIIRADEE L FkIC
fToTWA. U Y Nodl9h HNod3SDRREFr L Eid
D HOEREEER S A BTIR T, BT = — B
i, FLOEREEEY CH 2 RO BRI
TP (BEARE OB KE) F23BIRELCE
v, RRFE S ERDERIE, 5 mn R RREHLERSEE
heb LTz, HESHIZRROEEEL, Y 7Nod27
TRLNEZT mmTH Y, EHiz0IZHF 5 L 195 mm
SETHoT.

F2 Y vy OFERIGIERS R

B :mm
BE | BE | 5EFE | 4R
#F | HU | HEHE | AIEE | 8| EE| EE
5| & i e | & | n
a b a b |a|b a b
13| ®@70C| 70[ 70| 70/ 73] 0] O 0 0
209 ©G8E| 82| 82| 82| 83| 0] O 0 0
239 ¢68C| 68| 68| 68 70| 0] O 0 0
402| @76C| 76| 76| 73| 78| 3| 0| 0.84 0
419 ®76C| 76| 76/ 73| 76/ 3| 0| 0.84 0
421 @76C| 76/ 76| 73| 75| 3| 1| 084| 028
423 d76C| 76| 76| 721 73] 4] 3| 1.12] 0.84
425 @©76C| 76| 76| 721 72| 4] 4| 1.142] 1.12
427 ®@76C| 76/ 76/ 69, 71 7| 5| 1.95] 1.40
429 ®76C| 76| 76| 70| 72| 6| 4 167 1.12
431 ®@76C| 76| 76| 70/ 72| 6| 4| 1.67| 1.12
433 ®76CG| 76| 76|/ 71| 73] 5| 3| 1.40] 084
435 @76C| 76| 76| 73] 74 3| 2| 0.84] 056
567/d132C| 132] 132] 130| 135 2| 0| 056 0
815/ 111G] 111] 111] 112] 115 0] 0 0 0
80
75 l-..\i\—' e -——u—;
—— |
e 70 =
E
65
B —o— ﬁ%
11 60 - =Ta
& - HEEF b
50

418 420 422 424 426 428 430 432 434 436
V&S

B7 HEEmi~OHET A 5 5 30 EAYY o FRIEEER



7. F&H

GPSHEEE T 4 DIFEFF =— /20T, BEHEREETT
ST RERFBEWTH L, KO LB THS.
(1) 35E7h R bie o THRE STV F-GPSIFFE 7 OFf%
FFx—id, RSO HFRROh-L00, §
WF x— L ORESLETT L RERERONT, %
BRIIE2MER RS T S RREE SN,
Q) BRI EANT-F = — VORI, 4 FIROSER
BB Th, FHEDE OFERRET IHFRRILE
AV TS, B EAEUAERERL VNS
=2 b, BEREMOTREEIRBR ISz,
) BEROBFERN A LY 713, fEEH & OB
PR LIEECRET D LELONAEAFAOL L LMY
Bz a2 LRGN EnT.

HEE | AW, BRI (S)21221007 Tk Lix.

HSZo RTINSO BEFERK, FRURK, B)IE
R, EXAEER REAMNK, BSOEfER B
WER, SFHRK, FEMEE, EARER, 5B/
ZEHOFFRESICEMLET. £, SHEREOR
FEEE R UGPSHIET 4 OFRE - SIELIZHEHE LR
SOSRERORE L O TRYFICES O LET

SEICK

) kIAEE, NI, FEEM, mERZ, ABE
18 : GPS 7 A Iz L DM EDBR - B¥E - BizHN,
iR TEa B, 55 5038, pp. 1411-1415, 2003.

2) Nagai, T., Ogawa, H., Terada, Y., Kato, T. and Kudaka,
M.: GPS Buoy Application to Offshore Wave Tsunami and
Tide Observation, ASCE, Proc. af the 20th International
Canference on Coastal Engineering (ICCE'04), Vol. 1, pp.
1093-1105, 2004.

3} Nagai, T,, Kato, T., Moritani, N., [zumi, H., Terada, Y. and
Mitsui, M.: Offshore Tsunami Monitoring Network Design

4)

5

6)

8

9

10)

TN

12)

1-AFLuICHRS (REEMFE), Vol. 70, No. 1, 13-18, 2014,

using GPS Buoys and Coastal on-site Sensors, ASCE,
Proc. of the 30th International Conference on Coastal En-
gineering (ICCE'06), Vol. 2, pp. 1529-1540, 2006.
KHATTE : WRBHEORLIZ L DIFOELORER
—GPS WIREF 2006 £ L D RS 1 —, bA¥ES
3 (20064E9 H%) , pp. 78-79, 2006,

K HAE : GPS ERHIZ L DMEOHBRORH,
AREEEEE (20094E 4 HEF) , pp. 50-53, 2009,

Nagai, T., Shimizu, K., Lee, J. H,, Iwasaki, M., Fujita, T.
and Kudaka, M.: Development OF Multi-Purpose Offshore
Observation System Using GPS Buoy, Proceedings of
Coasial Structures 2007 International Conference, Vol. 1,
pp. 669-680, 2007.

WL BE - MR ROMT - BERICETS
BroEe i SR RS, BRI A2 Y —Nod2,
— R E A R ETRA R L 5 —, p. 152,2013.
Terada, Y., Kato, T., Koshimura, 5. and Yoshida, H: A
development of tsunami monitoring system using GPS
buoy, 3rd Intemational Tsunami Field Symposium, Toho-
ku University, 2010,

Kato, T., Terada, Y., Nishimura, H., Nagai, T. and Koshi-
mura, S.; Tsunami records due to the 2010 Chile Earth-
quake observed by GPS buoys established along the Pacif-
ic coast of Japan, Earth Planets Space, Vol. 63, pp. e5-¢8,
2011.

Terada, Y., Kato, T., Nagai, T., Koshimura, S., Miyake, T.,
Nishimura, H. and Kunihiro, S.: Development of a tsunami
monitoring system using a GPS Buoy, Proc. IGNSS 2011,
International Glabal Navigation Satellite Systems Society,
Paper No. 14, pp. 1-12 (CD-ROM), 2011,

Terada, Y., Kato, T., Nagai, T., Kawaguchi, K., Koshimura,
8. and Maisushita Y.: An improvement of the GPS buoy
system for detecting tsunami at far offshore, Book of Ab-
stract, the International Association of Geodesy (TAG) Sci-
entific Assembly, p. 409, 2013,

P, Wi Fak 21 FEEREE 18, =
HIR (EFMM 15 TX) BRBBEHTER, BT
AR (RE165) tEmeftRE, p.9,2009.

(2013.10.28 B4

LONG-TERM MOORING CHAIN SYSTEM DURABILITY
OF THE GPS TSUNAMI-WAVE METER

Yukihiro TERADA, Toshihiko NAGAI, Teruyuki KATO, Shunichi KOSHIMURA,
Koji KAWAGUCHI and Yasuhiro MATSUSHITA

This paper introduced observation data of proto-type GPS buoy's mooring chain at 3 years and 7
months after the installation, in order to provide information for practical design of future safer and more
economical design of the mooring system. Following findings may be important for the future GPS buoy
design. (1) Mooring chains stayed in good performance even after 3 years and 7 months of severe ocean
field conditions, although they were covered by large amount of sea plants like shells and several studs
disappeared from some of the chains located at frequently suffering from landing and dis-landing action
by the buoy motion. (2) The quantity of real frictional wear was considerably smaller than assumed one at
all the part of the mooring system. (3) Maximum real frictional wear was observed at chains located at
frequently suffering from landing and dis-landing action by the buoy motion.

[No)=1



[&E & $#2015-1]

Recent Developments of GPS Tsunami Meter
for a Far Offshore Observations

Yukihiro Terada, Teruyuki Kato, Toshihiko Nagai, Shunichi Koshimura,
Naruyuki Imada, Hiromu Sakaue, and Keiichi Tadokoro

Abstract

A new tsunami observation system using GPS buoys has been developed, which employs
the RTK-GPS technique to detect and monitor tsunamis in real-time before they reach the
coast. A series of experimental GPS buoys succeeded in detecting three tsunamis with
amplitudes of about 10 cm. Following this success, since 2007, the Japanese government
has established GPS buoy systems for monitoring sea waves at 19 sites around the Japanese
coast. These systems succeeded to detect 11th March 2011 Tohoku-Oki earthquake tsunami.
Through these experiences, we recognized two problems that need to be solved in order to
deploy buoys at farther distances from the coast: one is that positioning accuracy decreases
as the distance increases and the data transmission by radio becomes difficult for a long
distance. In order to overcome these difficulties, first, a new algorithm of PPP-AR for real-
time application was employed. The test analysis showed that the positioning accuracy may
attain a few centimeters even if the reference GPS network that generates precise orbits and
clocks is farther than 1,000 km. Then, a satellite communication system was experimentally
used to send data in both directions between the land base and buoy. The data that was
obtained on the buoy was transmitted to the land base and was shown on a webpage in real-
time, successfully. This kind of system may have further applications of earth science; for
example, we are trying to implement GPS/acoustic apparatus for continuous monitoring of
ocean floor crustal deformations.

Y. Terada (<)

Keywords
GPS ¢ GPS buoy ¢ Precise point positioning ¢ Satellite communication ® Tsunami
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If a buoy with a sensor for detecting sea surface height
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can be effectively used for disaster mitigation. We have
developed a GPS buoy system for this purpose, equipped
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Fig. 1 Layout of the experimental GPS tsunami observation system

with a GPS antenna at the top of the buoy floating at the
sea surface (Kato et al. 2000). Data taken on the buoy was
transmitted to the land base where another GPS set was
placed and the baseline mode real-time kinematic (RTK)
GPS technology was used for data analysis. The estimated
position of the sea surface relative to a stable location on
land were monitored at the local governmental offices and the
data were disseminated through internet in real-time as well.
Figure | shows the GPS tsunami observation system we have
used.

This system was first deployed off Ofunato city, northeast
Japan, for the period between 2001 and 2003, and then
moved to off Cape Muroto, southwest Japan, for the period
between 2004 and 2007 and between 2008 and 2012. These
buoys succeeded in detecting three tsunamis whose ampli-
tudes were nearly 10 cm. They are the 23rd June 2001 Peru
earthquake, the 26th September 2003 Tokachi earthquake
and the 5th September 2004 Kii earthquake (Nagai et al.
2003; Kato et al. 2005). These results showed that the GPS
buoys are useful for early detection of tsunamis. See Kato
et al. (2000, 2005, 2011), and Terada et al. (2011) for other
details of developments.

Following the success of our GPS buoy experiments,
the Ministry of Land, Infrastructure, Transport and Tourism
(MLIT) of Japan has established the GPS buoy system
for monitoring sea waves at 19 sites around the Japanese
coast since 2007 as a part of the nationwide wave mon-
itoring system called Nationwide Ocean Wave informa-
tion network for Ports and HArbourS (NOWPHAS) sys-
tem. These systems also succeeded in detecting the 28th
February 2010 Chile earthquake. Then, a giant earthquake of
Mw9.0 occurred offshore Tohoku district, northeast Japan,
on 11th March 2011 and the generated tsunami devastated

Tohoku-U

Hitz

the whole area along the Pacific coast of the district, which
caused about 18,000 people of deaths and missing in the
area. Figure 2 shows the real-time tsunami records by this
earthquake, observed at the Off South Iwate (Kamaishi)
station of NOWPHAS system (see Fig. 3 for the location).
The tsunami measured over 6 m in height and was observed
about 15 min after the earthquake. The Japan Meteorological
Agency used the data for updating the level of the tsunami
warning to the greatest value. After the highest wave was
observed, real-time monitoring of the tsunami data stopped
suddenly. Since the data of all GPS buoys installed in this
area stopped at once, it was thought that the cause was
interception of the communication network by electric power
loss. However, as the backup power supplies worked effec-
tively at the each land base stations, recordings of the tsunami
were continued and the data were retrieved later. Figure 4
shows thus obtained examples of full wave form recordings
of the Tohoku-Oki earthquake including the later part of
retrieved records. Almost all of the observation sites of
NOWPHAS successfully recorded the full wave form of the
tsunamis.

2 Problems Found in Case of 2011
Tohoku-Oki Earthquake Tsunami

Through these experiences of GPS buoys for detecting
tsunamis, we have recognized two problems that need to
be solved for more effective use of GPS buoy for disaster
mitigation.

The first problem is that the buoys established at less
than 20 km from the coast is not far enough for disaster
mitigation. In case of Tohoku-oki earthquake on 11th March

hashimoto.manabu.7e @kyoto-u.ac.jp
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Fig. 2 The tsunami record due to the Tohoku-Oki earthquake of
11th March 2011. Figure is captured from real-time web display of
NOWPHAS at Off South Iwate (Kamaishi) site. (http://www.milit.go.

2011, the update of tsunami alert was conducted probably
only a few minutes before it reaches the coast. At that
time, it was probable that electric power was already shut
down and updated tsunami alert might have not reached
to all of the relevant people. Though this latency could
be improved by much closer, ideally automatic, monitoring
of offshore buoys, farther placement of the buoy from the
shore would provide a longer lead time for more effective
evacuation.

The second problem is that the data stopped recording due
to power and/or Internet failure soon after the earthquake.
Though we secured recordings even after power failure
by preparing an uninterruptible-power-supply (UPS) for a
while, which enabled us to recover the record after the
earthquake, the real-time dissemination of the record was not
attained.

Thus, in this study, we tried to overcome these problems
to deploy GPS buoys at, say, farther than 100 km, at least,
from the coast, by introducing a new positioning algorism
and a satellite communication system for more robust data
transmission to farther distance to avoid power/internet inter-
ruptions.

jp/kowan/nowphas/) Horizontal axis is shown as Japan Standard Time
(UTC + 9 h) of 11th March 2011

3 Improvements of Positioning
Strategy

The system has had a limit of distance up to about 20 km
from the coast as it employs a conventional baseline mode
kinematic algorithm called RTK GPS. The system used
broadcasted satellite orbits and clocks for real-time applica-
tions, so that the positioning accuracy decreases rapidly as
the distance exceeds 20 km. In order to improve the distance
limit, in this study, we employed a new algorithm called PPP-
AR (precise point positioning with ambiguity resolution) for
real-time kinematic applications (Mervart et al. 2008).
Precise Point Positioning (PPP) technology was first intro-
duced for static analysis (e.g., Zumberge et al. 1997) and the
technology has been widely used for geodetic applications
due to its superior characteristics of less computational
burden and easier interpretations of crustal displacement as
it does not require any prior information of the motion of
referenced stations, as compared with the baseline mode
analysis. The most precise estimation of position is obtained
by resolving ambiguities inherent to the phase observation
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2011). Only the first onset was monitored in real-time as shown in Fig. 2. Later part of records were retrieved afterwards

of GPS. Resolving ambiguity for PPP can be achieved by
obtaining precise orbits and clocks of GPS satellites from
IGS after the observation. Then, the technology of PPP
has been developed for the real-time kinematic applications.

Mervart et al. (2008) for example used satellite single differ-
enced data of phase and code observations to estimate correc-
tions for RTK PPP. By employing precise orbits and clocks,
it can then resolve ambiguities, which we call PPP-AR
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RTK. This algorithm was implemented in the software called
RTNet developed by GPS Solutions Inc., which we used
in this study. The advantage of the software is that it can
provide precise orbits and clocks from regional reference
networks like GEONET (GNSS Earth Observation Network
System) of Japan. In addition the RTNet tool allows a real-
time analysis capability, which is favorable for our purpose.

First, we examined the accuracy of PPP-AR using RTNet
software with post-processed high-accuracy baseline analy-
sis. Figure 5 shows the estimated time series of a GEONET
site at Shimokawa, with different distances from the refer-
ence network for generating precise orbits and clocks for
corrections. The figure clearly shows that the variability is
only a few centimeters, at most, for even more than 1,000 km
distance from the regional reference network. These results
are encouraging to us that GPS buoys could be put at farther
offshore, say, more than 100 km or even more than 1,000 km
from the coast.

We then implemented the RTNet system to our experi-
mental buoy system off Cape Muroto (see Fig. 3 for the loca-
tion). Figure 6 shows a comparison of coordinates obtained

Observation period is from 28 December 2011 to 5 January 2012
(Courtesy by Hitachizosen Corporation 2012)

with conventional RTK GPS (upper inset) and PPP-AR
(lower inset). In this case, the buoy is set about 35 km
south off Cape Muroto. The sample data is taken for 1 h
from 12:00 to 13:00 on 18th May in 2012. 1 Hz sampled
data of vertical components of the buoy position is plotted.
The upper record is obtained by the conventional RTK-GPS,
while the lower is obtained by the PPP-AR algorithm. It is
readily seen that the short term fluctuations in both records
looks highly correlated, suggesting that both records could
precisely recover the higher frequency wind waves of the sea-
level heights. However, RTK-GPS records show significant
fluctuations for the longer period of several minutes and even
sudden offsets and faulty data, probably due to mis-fix of
ambiguity, intermittently, which is not seen in the record
of PPP-AR (lower plots of Fig. 6). Clearly the sea surface
fluctuations during this time period is only several tens of
centimeters which suggest calm weather, so that we cannot
expect any sudden offsets or long-period of fluctuations with
periods of several minutes or longer.

Since we do not see such bad record in RTK-GPS if the
distance is less than 20 km, we judge that the reason of
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Fig. 6 Comparison between RTK-GPS (Upper) and PPP-AR (Lower) GPS data: Muroto experimental site (Fig. 3)

such result stems from long distance environments of RTK-
GPS. In such circumstances, there occurs frequent mis-fix
of ambiguities and cause jumps in the estimated positions.
The stability of PPP-AR suggests that the ambiguity in phase
is totally resolved to give correct estimation of position.
These situations clearly show the effectiveness of PPP-AR
positioning method relative to conventional RTK GPS, in
particular, for the far offshore deployments of GPS buoys.

4 Utilization of Satellite
Communication System

Given that above new system is feasible and is established
far offshore from the coast, then another problem is how
the data obtained at the buoy can be transmitted to land.
The ground based radio transmission system that is currently
used, cannot be used for such long distance of more than
100 km. Then, a satellite data transmission will be the
solution. If satellite data transmission is possible, the data
have not to be sent to the area nearest to the coast, which
allows us that the data can be safely recorded without
interruptions due to earthquakes and/or tsunamis. Thus, data
transmission using satellites may solve the second problem
of unexpected interruption of data at the critical time when
tsunamis approach the coast.

Experiments for such satellite data transmission from the
buoy to the ground data management center were conducted
under another independent cooperative research project with
Japan Aerospace Exploration Agency (JAXA), National
Institute of Information and Communications Technology
(NICT) and Hitachizosen Corporation (Yamamoto et al.
2014). The first preliminary experiment was conducted

from 24th October to 6th November in 2012. The Japanese
engineering test satellite (ETS VIII) was used for the purpose
of data transmission. In this experiment unidirectional data
transmission from the buoy to the land base was conducted.
The result showed about 1072 to 3 x 10~! of Frame Error
Rate (FER) depending on wave height. This result was
thought satisfactory for continuous monitoring of sea surface
height changes, though some more improvements could be
made.

Then, we conducted another experiment for bi-directional
data transmission for testing PPP-AR. Figure 7 shows the
flow of data in this experiment. In this experiment, Japanese
Quasi Zenith Satellite System (QZSS) was used to transmit
correction information for PPP-AR from the ground to the
buoy. The data transmission from buoy back to land was
carried out using ETS VIII as is shown in Fig. 7. The
experiment was conducted from 3rd to 5th of January and
from 1st to 21st of June in 2014. Figure 8 shows the obtained
data by this experimental system; the upper inset is non
filtered sea surface height which shows wind waves and tide,
while lower data is low pass filtered data which is mostly
tidal component. First, the upper time series includes all of
sea surface waves. During this time period, it is readily seen
that the vertical motion of the buoy has amplitude (peak-
to-peak) of about 0.6 m, quite calm environments. Then,
the amplitude of short period waves was getting bigger to
about 1.3 m toward noon in Japan time, which is a little
rough water. If tsunami of a few centimeter in amplitude is
overlapped on the wave, it may not be visible in the record.
However, as the periods of tsunami are from several minutes
to longer than one hour, the wave form of tsunami can be
extracted if a low pass filter is applied as shown in the lower
plot of Fig. 8. Tsunami, if superimposed on a smooth curve
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of tidal change of the lower figure, may not be overlooked if
its amplitude is larger than a few centimeters.

However, the data transmission capability is still a prob-
lem as it varies depending on the wave height. Figure 9
shows the relation of data transmission rates and significant
wave heights in the case of the first experiment in 2014. The
wave height was very low on the first day of experiment,
less than 50 cm. That became higher and higher on the 2nd
day, for which all the observed data are shown in Fig. 8. The

significant wave height became about 2.3 m. The maximum
wave height at this time was 4.6 m. On the contrary, data
transmission rate is getting worse as the significant wave
height was getting higher and it became better when the
wave height became lower during the last day. This result
is the same as that obtained at the preliminary experiment in
2012. Thus, it seems clear that there is a reverse correlation
between significant wave height and data transmission rate. It
seems that the rate of data transmission error changes due to
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the tilting of buoy due to sea surface variations. As we used a
planer antenna for signal transmission and acquisition, it has
a directional property depending on zenith angle. If the buoy
inclines larger, the gain of signal gets lower and the frame
error rate increases. This characteristics may be improved
by better designing the antenna for data transmission and/or
hardware settings. (see Yamamoto et al. (2014) for further
details of experiments).

Given that a satellite communication link is feasible,
the data loss that we experienced at the time of the 2011
Tohoku-Oki earthquake may be resolved by putting the
reference network much farther from the epicentral area.
In this study, we used three regional network areas for
reference as is shown in Fig. 5. We could run the routine
in parallel at any time and use the most effective reference
network when any of them has a problem as it is hard to
imagine that all of Japanese GEONET could suffer from
a blackout.

5 Further Applications of GPS Buoy
for Continuous Monitoring of Ocean
Bottom Crustal Movements

In addition to the above developments, we are trying to
apply our buoy system for continuous monitoring of ocean
bottom crustal movements. Many previous researchers have
developed the GPS-acoustic system for this purpose (e.g.,
Spiess et al. 1998; Kido et al. 2006; Fujita et al. 2006; Sato
et al. 2011a, b; Tadokoro et al. 2012). The basic idea of a
GPS-acoustic system combines GPS and acoustic ranging
to estimate the position of the seafloor. Figure 10 illustrates
a plan of GPS-acoustic system for monitoring ocean floor
crustal movements. First, GPS is used to estimate the position
of the floating body (such as vessel or buoy), and then, the
lengths between the floating body and the ocean bottom
positions are measured by acoustic ranging. Though the
estimated lengths between the sea surface and the sea bottom
changes greatly, the position of the center of the multiple

ocean bottom sensors (more than three) does not change
much. Thus we take its position as the position of the
seafloor.

As the previous systems have used vessels to measure the
position of the ocean surface, the measurements have been
only intermittent. GPS buoys could be used for continuous
monitoring of ocean bottom crustal movements, if the GPS
buoy is equipped with an acoustic system. Based on this idea,
we started experiments using our GPS buoy off Cape Muroto
in 2013. A similar idea with slightly different system design
was introduced by Takahashi (2014). Our approach, different
from their approach, is the integration of GPS buoys for
multiple use of GPS technology for better cost effectiveness
and wider contributions to earth science, not only for tsunami
and seafloor crustal deformation but also for atmospheric
and ionospheric research. The experimental observation sys-
tem in this study, shown in Fig. 10, continuously received
acoustic data at the land base station from 3rd of August to
23rd of November. The data acquisition rate is 96% during
the first 10 days. Moreover, the acoustic data obtained at
the buoy showed clear signal suggesting high signal-to-noise
ratio, probably because there was no disturbing engine noise
in case of using a ship. Although the detailed examination
of data is left for future studies, it was shown that a clear
waveform can be observed if we use a buoy for a floating
platform. We will try to continue experiments for tackling
the problem.

6 Conclusion and Remarks

The tsunami monitoring system using a GPS buoy has been
developed for more than eighteen years. This system clearly
showed that tsunamis can be measured within the accuracy of
several centimeters. After the 11th March 2011 Tohoku-Oki
earthquake tsunami, the GPS buoy system has been improved
to solve two problems to deploy the buoys at distances farther
offshore:

1. Introduction of a new algorithm for GPS data analy-
sis, precise point positioning with ambiguity resolution
method (PPP-AR), greatly improved the distance limita-
tion from the coast to GPS buoys to more than 1,000 km.

2. Satellite data transmission between buoys and ground
data management centers using ETS VIII and QZSS was
successfully implemented for tsunami observation in the
outer ocean, which enables avoiding data loss due to
power failures right after large earthquakes.

3. Integration of the system with a GPS/acoustic system for
continuous monitoring of sea-floor crustal movements,
together with wider applications for earth science, will
make the system much more cost effective for ocean
geophysical exploration.
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[Purpose and Background of the Research]

The research team lead by the Project Leader of
this proposal have developed GNSS buoy for
monitoring tsunami at coastal area. Given the
success of preliminary experiment of precise
measurements of sea-surface heights at far offshore,
this research plan is proposed, in which we try to
conduct operational experiments for high accurate
real-time monitoring of sea-surface height
measurements at far offshore. In addition, we
tackle a new experiment of continuous
measurements of ocean-bottom crustal movements
using GNSS-acoustic system using the same GNSS
buoy. If this experiment is successful, the GNSS
buoy system will open a new era of exploring
continuous observation of ocean-floor, which will
lead to bring us detailed information on inter-plate
coupling and its temporal change, process of slow
slip events, etc. Moreover, as the GNSS buoy data
will be utilized to monitoring troposphere and
ionosphere, deployments of GNSS buoy array in the
ocean will be a powerful infrastructure for a
synthetic disaster mitigation technology.

[Research Methods]

We will rent a fishery buoy off Kochi Prefecture
for our experiments. A GNSS system and acoustic
transducer, together with apparatus for satellite
transmission, will be set on the buoy.

Fig. 1 Detailed design of experiment.

We conduct continuous experiments using satellite

communication link. Precise orbits are transmitted
from the ground and precise positioning and
estimation of ZTD and TEC are conducted
on-board of the buoy. Continuous acoustic ranging
between buoy and ocean-bottom will also be
conducted. Evaluation of data quality will be made
as well. Quality of ZTD and TEC data are
examined and their impact to the atmospheric and
ionospheric researches will be evaluated. Finally,
the final plan of GNSS buoy array in outer ocean
and the specification for necessary communication
satellite will be documented.

[Expected Research Achievements and

Scientific Significance]
A new research developments utilizing the GNSS
buoy or buoy array will be expected in the
following fields; tsunami including sea-waves,
ocean-bottom crustal movements — in particular,
related to inter-plate coupling and slow slip
events -, atmospheric and ionospheric researches.
Moreover, the GNSS buoy array, if it is realized in
the future, will be a powerful infrastructure for a
synthetic disaster mitigation technology related
to the field stated above.
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